Suppr超能文献

非局部非线性克尔介质中的调制不稳定性

Modulational instability in nonlocal nonlinear Kerr media.

作者信息

Krolikowski W, Bang O, Rasmussen J J, Wyller J

机构信息

Australian Photonics Cooperative Research Centre, Laser Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 2):016612. doi: 10.1103/PhysRevE.64.016612. Epub 2001 Jun 26.

Abstract

We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose-Einstein condensates.

摘要

我们研究非局部非线性克尔介质中平面波的调制不稳定性(MI)。对于聚焦非线性,我们表明,尽管非局部性倾向于抑制MI,但无论非局部响应函数的具体形式如何,它都永远无法完全消除MI。对于散焦非线性,稳定性特性敏感地取决于响应函数的形式:对于平滑形式(例如高斯形式),平面波总是稳定的,但对于矩形响应可能会出现MI。我们还发现,对于弱非局部性的简化模型预测,只要强度超过某个临界值,在散焦介质中对于任意响应形式都会出现MI。然而,如果简化模型要代表一般非局部非线性的弱非局部极限,如在光学和玻色 - 爱因斯坦凝聚理论中那样,那么这种MI状态似乎超出了简化模型的有效性范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验