Suppr超能文献

使用连锁标记推断突变的年龄。

Using linked markers to infer the age of a mutation.

作者信息

Rannala B, Bertorelle G

机构信息

Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Hum Mutat. 2001 Aug;18(2):87-100. doi: 10.1002/humu.1158.

Abstract

Advances in sequencing and genotyping technologies over the last decade have enabled geneticists to easily characterize genetic variation at the nucleotide level. Hundreds of genes harboring mutations associated with genetic disease have now been identified by positional cloning. Using variation at closely linked genetic markers, it is possible to predict the times in the past at which particular mutations arose. Such studies suggest that many of the rare mutations underlying human genetic disorders are relatively young. Studies of variation at genetic markers linked to particular mutations can provide insights into human geographic history, and historical patterns of natural selection and disease, that are not available from other sources. We review two approaches for estimating allele age using variation at linked genetic markers. A phylogenetic approach aims to reconstruct the gene tree underlying a sample of chromosomes carrying a particular mutation, obtaining a "direct" estimate of allele age from the age of the root of this tree. A population genetic approach relies on models of demography, mutation, and/or recombination to estimate allele age without explicitly reconstructing the gene tree. Phylogenetic methods are best suited for studies of ancient mutations, while population genetic methods are better suited for studies of recent mutations. Methods that rely on recombination to infer the ages of alleles can be fine-tuned by choosing linked markers at optimal map distances to maximize the information available about allele age. A limitation of methods that rely on recombination is the frequent lack of a fine-scale linkage map. Maximum likelihood and Bayesian methods for estimating allele age that rely on intensive numerical computation are described, as well as "composite" likelihood and moment-based methods that lead to simple estimators. The former provide more accurate estimates (particularly for large samples of chromosomes) and should be employed if computationally practical.

摘要

在过去十年中,测序和基因分型技术的进步使遗传学家能够轻松地在核苷酸水平上对遗传变异进行表征。通过定位克隆,现已鉴定出数百个携带与遗传疾病相关突变的基因。利用紧密连锁遗传标记的变异,可以预测特定突变在过去出现的时间。此类研究表明,许多导致人类遗传疾病的罕见突变相对较新。对与特定突变相关的遗传标记变异进行研究,可以揭示人类地理历史、自然选择和疾病的历史模式,而这些是其他来源无法提供的。我们综述了两种利用连锁遗传标记变异估计等位基因年龄的方法。系统发育方法旨在重建携带特定突变的染色体样本所对应的基因树,从该树的根部年龄获得等位基因年龄的“直接”估计值。群体遗传学方法依赖于人口统计学、突变和/或重组模型来估计等位基因年龄,而无需明确重建基因树。系统发育方法最适合研究古老突变,而群体遗传学方法更适合研究近期突变。依靠重组来推断等位基因年龄的方法可以通过选择最佳图谱距离的连锁标记进行微调,以最大化关于等位基因年龄的可用信息。依靠重组的方法的一个局限性是经常缺乏精细尺度的连锁图谱。描述了依赖密集数值计算来估计等位基因年龄的最大似然法和贝叶斯法,以及导致简单估计量的“复合”似然法和基于矩的方法。前者提供更准确的估计值(特别是对于大量染色体样本),如果在计算上可行,应采用这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验