Waud J P, Bermúdez Fajardo A, Sudhaharan T, Trimby A R, Jeffery J, Jones A, Campbell A K
Department of Medical Biochemistry, Cardiff and Vale NHS Trust, Llandough Hospital, Llandough, Penarth, Vale of Glamorgan CF64 2XX, UK.
Biochem J. 2001 Aug 1;357(Pt 3):687-97. doi: 10.1042/0264-6021:3570687.
Homogeneous assays, without a separation step, are essential for measuring chemical events in live cells and for drug discovery screens, and are desirable for making measurements in cell extracts or clinical samples. Here we demonstrate the principle of chemiluminescence resonance energy transfer (CRET) as a homogeneous assay system, using two proteases as models, one extracellular (alpha-thrombin) and the other intracellular (caspase-3). Chimaeras were engineered with aequorin as the chemiluminescent energy donor and green fluorescent protein (GFP) or enhanced GFP as the energy acceptors, with a protease linker (6 or 18 amino acid residues) recognition site between the donor and acceptor. Flash chemiluminescent spectra (20--60 s) showed that the spectra of chimaeras matched GFP, being similar to that of luminous jellyfish, justifying their designation as 'Rainbow' proteins. Addition of the protease shifted the emission spectrum to that of aequorin in a time- and dose-dependent manner. Separation of the proteolysed fragments showed that the ratio of green to blue light matched the extent of proteolysis. The caspase-3 Rainbow protein was able to provide information on the specificity of caspases in vitro and in vivo. It was also able to monitor caspase-3 activation in cells provoked into apoptosis by staurosporine (1 or 2 microM). CRET can also monitor GFP fluor formation. The signal-to-noise ratio of our Rainbow proteins is superior to that of fluorescence resonance energy transfer, providing a potential platform for measuring agents that interact with the reactive site between the donor and acceptor.
无需分离步骤的均相分析对于测量活细胞中的化学事件和药物发现筛选至关重要,并且对于在细胞提取物或临床样本中进行测量也很理想。在此,我们以两种蛋白酶为模型,一种是细胞外的(α-凝血酶),另一种是细胞内的(半胱天冬酶-3),展示了化学发光共振能量转移(CRET)作为均相分析系统的原理。构建了嵌合体,其中水母发光蛋白作为化学发光能量供体,绿色荧光蛋白(GFP)或增强型GFP作为能量受体,在供体和受体之间有一个蛋白酶连接子(6或18个氨基酸残基)识别位点。快速化学发光光谱(20 - 60秒)表明,嵌合体的光谱与GFP匹配,类似于发光水母的光谱,证明它们被命名为“彩虹”蛋白是合理的。加入蛋白酶后,发射光谱以时间和剂量依赖的方式转变为水母发光蛋白的光谱。对蛋白水解片段的分离表明,绿光与蓝光的比例与蛋白水解程度相匹配。半胱天冬酶-3彩虹蛋白能够在体外和体内提供有关半胱天冬酶特异性的信息。它还能够监测由星形孢菌素(1或2 microM)诱导凋亡的细胞中的半胱天冬酶-3激活。CRET还可以监测GFP荧光的形成。我们的彩虹蛋白的信噪比优于荧光共振能量转移,为测量与供体和受体之间反应位点相互作用的试剂提供了一个潜在平台。