Suppr超能文献

心室肌细胞中ATP和ADP缓冲、Ca(2+)和Mg(2+)转运以及离子泵调节的模型研究

Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte.

作者信息

Michailova A, McCulloch A

机构信息

Department of Biophysics, Bulgarian Academy of Science, Sofia, Bulgaria.

出版信息

Biophys J. 2001 Aug;81(2):614-29. doi: 10.1016/S0006-3495(01)75727-X.

Abstract

We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.

摘要

我们扩展了Winslow等人(《循环研究》1999年,84卷:571 - 586页)提出的心室肌细胞模型,纳入了Ca(2+)和Mg(2+)通过ATP和ADP进行缓冲与转运的方程,以及离子转运体(Na(+)-K(+)泵、肌膜和肌浆网Ca(2+)泵)的MgATP调节方程。结果表明,在正常情况下,低亲和力ATP对Ca(2+)的结合以及CaATP的扩散可能会影响细胞内Ca(2+)信号的幅度和时间进程。该模型还表明,ATP/ADP比值的下降会显著降低肌浆网Ca(2+)含量,增加舒张期Ca(2+),降低收缩期Ca(2+),增加通过L型通道的Ca(2+)内流,并降低在周期性电压钳刺激期间Na(+)/Ca(2+)交换体排出Ca(2+)的效率。分析表明,代谢抑制期间这些变化的最重要原因是舒张期MgATP水平降低导致肌浆网Ca(2+)-ATPase泵下调。膜附近形成的高Ca(2+)浓度可能比肌浆中较低的Ca(2+)浓度对Mg(2+)、ATP和ADP浓度的影响更大。模型预测总体上与在正常和病理条件下测得的实验观察结果一致。

相似文献

2
Effects of magnesium on cardiac excitation-contraction coupling.
J Am Coll Nutr. 2004 Oct;23(5):514S-517S. doi: 10.1080/07315724.2004.10719392.
3
Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.
Biophys J. 2005 Mar;88(3):2234-49. doi: 10.1529/biophysj.104.046284.
4
Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes.
Am J Physiol Cell Physiol. 2007 Aug;293(2):C542-57. doi: 10.1152/ajpcell.00148.2006. Epub 2007 Feb 28.
5
Limitations of the whole cell patch clamp technique in the control of intracellular concentrations.
Biophys J. 1990 Sep;58(3):759-70. doi: 10.1016/S0006-3495(90)82418-8.
6
Effect of ATP depletion on kinetics of Na/Ca exchange-mediated Ca influx in Na-loaded heart cells.
J Mol Cell Cardiol. 1997 Feb;29(2):503-14. doi: 10.1006/jmcc.1996.0294.
8
LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport.
Am J Physiol Cell Physiol. 2001 Dec;281(6):C2049-60. doi: 10.1152/ajpcell.2001.281.6.C2049.
10
Oxygen free radicals and excitation-contraction coupling.
Antioxid Redox Signal. 2000 Spring;2(1):55-64. doi: 10.1089/ars.2000.2.1-55.

引用本文的文献

2
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants.
Antioxidants (Basel). 2021 May 11;10(5):760. doi: 10.3390/antiox10050760.
5
ADP protects cardiac mitochondria under severe oxidative stress.
PLoS One. 2013 Dec 13;8(12):e83214. doi: 10.1371/journal.pone.0083214. eCollection 2013.
7
Predictive Modeling and Integrative Physiology: The Physiome Projects.
Open Pacing Electrophysiol Ther J. 2010;3:66-74. doi: 10.2174/1876536X01003010066.
8
Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP.
J Gen Physiol. 2012 Aug;140(2):93-108. doi: 10.1085/jgp.201110708.
9
Phospholamban phosphorylation increases the passive calcium leak from cardiac sarcoplasmic reticulum.
Pflugers Arch. 2012 Sep;464(3):295-305. doi: 10.1007/s00424-012-1124-9. Epub 2012 Jul 7.

本文引用的文献

1
Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.
J Physiol. 2000 May 1;524 Pt 3(Pt 3):795-806. doi: 10.1111/j.1469-7793.2000.00795.x.
2
Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study.
Biophys J. 2000 May;78(5):2392-404. doi: 10.1016/S0006-3495(00)76783-X.
3
Spatial Ca(2+) distribution in contracting skeletal and cardiac muscle cells.
Biophys J. 2000 Jan;78(1):164-73. doi: 10.1016/S0006-3495(00)76582-9.
4
Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space.
Biophys J. 1999 Oct;77(4):1871-84. doi: 10.1016/s0006-3495(99)77030-x.
5
Cardiac ionic currents and acute ischemia: from channels to arrhythmias.
Physiol Rev. 1999 Jul;79(3):917-1017. doi: 10.1152/physrev.1999.79.3.917.
6
Fire-diffuse-fire model of dynamics of intracellular calcium waves.
Proc Natl Acad Sci U S A. 1999 May 25;96(11):6060-3. doi: 10.1073/pnas.96.11.6060.
7
Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.
Annu Rev Physiol. 1999;61:311-35. doi: 10.1146/annurev.physiol.61.1.311.
10
Modelling myocardial ischaemia and reperfusion.
Prog Biophys Mol Biol. 1998;69(2-3):515-38. doi: 10.1016/s0079-6107(98)00023-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验