Suppr超能文献

Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries.

作者信息

Buus C L, Pourageaud F, Fazzi G E, Janssen G, Mulvany M J, De Mey J G

机构信息

Department of Pharmacology, Cardiovascular Research Institute Maastricht, Universiteit Maastricht, The Netherlands.

出版信息

Circ Res. 2001 Jul 20;89(2):180-6. doi: 10.1161/hh1401.093575.

Abstract

To obtain information on the molecular and cellular mechanisms of flow-induced arterial remodeling, we analyzed the morphology and smooth muscle cell (SMC) characteristics in rat mesenteric resistance arteries after interventions that decreased and increased flow. Juvenile male Wistar Kyoto rats were subjected to surgery that, compared with control arteries, provided arteries with chronic low flow and chronic high flow. Low flow resulted in a decreased passive lumen diameter, hypotrophy of the artery wall, and both loss and decreased size of SMCs. Time course studies, with intervention length ranging from 2 to 32 days of altered blood flow, showed that the narrowing of the lumen diameter in low-flow arteries appeared within 2 days and that an early dedifferentiation of SMC phenotype was indicated by markedly reduced levels of desmin mRNA. High flow resulted in an increased passive lumen diameter and in hypertrophy of the artery wall. The hypertrophy resulted from SMC proliferation because SMC number, measured by the 3D-dissector technique, was increased and immunohistochemical assessment of proliferating cell nuclear antigen also showed an increase. The widening of high-flow arteries required 16 days to become established, at which time desmin mRNA was reduced. This time was also required to establish changed wall mass in both low-flow and high-flow arteries. Apoptotic cells detected by TdT-mediated dUTP-biotin nick end labeling staining were mainly located in the medial layer, and evaluation of DNA fragmentation indicated that increased apoptosis occurred in both low flow and high flow. This study shows for the first time direct evidence that reduced and elevated blood flow in resistance arteries produce, respectively, decrease and increase in SMC number, with dedifferentiation of the SMCs in both cases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验