Hausmann S, Ho C K, Schwer B, Shuman S
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
J Biol Chem. 2001 Sep 28;276(39):36116-24. doi: 10.1074/jbc.M105856200. Epub 2001 Jul 19.
Saccharomyces cerevisiae RNA triphosphatase (Cet1) and RNA guanylyltransferase (Ceg1) interact in vivo and in vitro to form a bifunctional mRNA capping enzyme complex. Here we show that the guanylyltransferase activity of Ceg1 is highly thermolabile in vitro (98% loss of activity after treatment for 10 min at 35 degrees C) and that binding to recombinant Cet1 protein, or a synthetic peptide Cet1(232-265), protects Ceg1 from heat inactivation at physiological temperatures. Candida albicans guanylyltransferase Cgt1 is also thermolabile and is stabilized by binding to Cet1(232-265). In contrast, Schizosaccharomyces pombe and mammalian guanylyltransferases are intrinsically thermostable in vitro and they are unaffected by Cet1(232-265). We show that the requirement for the Ceg1-binding domain of Cet1 for yeast cell growth can be circumvented by overexpression in high gene dosage of a catalytically active mutant lacking the Ceg1-binding site (Cet1(269-549)) provided that Ceg1 is also overexpressed. However, such cells are unable to grow at 37 degrees C. In contrast, cells overexpressing Cet1(269-549) in single copy grow at all temperatures if they express either the S. pombe or mammalian guanylyltransferase in lieu of Ceg1. Thus, the cell growth phenotype correlates with the inherent thermal stability of the guanylyltransferase. We propose that an essential function of the Cet1-Ceg1 interaction is to stabilize Ceg1 guanylyltransferase activity rather than to allosterically regulate its activity. We used protein-affinity chromatography to identify the COOH-terminal segment of Ceg1 (from amino acids 245-459) as an autonomous Cet1-binding domain. Genetic experiments implicate two peptide segments, (287)KPVSLYVW(295) and (337)WQNLKNLEQPLN(348), as likely constituents of the Cet1-binding site on Ceg1.
酿酒酵母RNA三磷酸酶(Cet1)和RNA鸟苷酸转移酶(Ceg1)在体内和体外相互作用,形成一种双功能的mRNA加帽酶复合物。在此我们表明,Ceg1的鸟苷酸转移酶活性在体外对热高度敏感(在35℃处理10分钟后活性丧失98%),并且与重组Cet1蛋白或合成肽Cet1(232 - 265)结合可保护Ceg1在生理温度下免受热失活。白色念珠菌鸟苷酸转移酶Cgt1也对热敏感,并通过与Cet1(232 - 265)结合而稳定。相比之下,粟酒裂殖酵母和哺乳动物的鸟苷酸转移酶在体外具有内在的热稳定性,且不受Cet1(232 - 265)影响。我们表明,对于酵母细胞生长而言,Cet1的Ceg1结合结构域的需求可以通过高基因剂量过表达缺乏Ceg1结合位点的催化活性突变体(Cet1(269 - 549))来规避,前提是Ceg1也过表达。然而,此类细胞在37℃无法生长。相比之下,如果单拷贝过表达Cet1(269 - 549)的细胞表达粟酒裂殖酵母或哺乳动物的鸟苷酸转移酶来替代Ceg1,则它们在所有温度下都能生长。因此,细胞生长表型与鸟苷酸转移酶的固有热稳定性相关。我们提出,Cet1 - Ceg1相互作用的一个重要功能是稳定Ceg1鸟苷酸转移酶活性,而非对其活性进行变构调节。我们利用蛋白质亲和色谱法鉴定出Ceg1的COOH末端片段(氨基酸245 - 459)为一个自主的Cet1结合结构域。遗传学实验表明两个肽段,(287)KPVSLYVW(295)和(337)WQNLKNLEQPLN(348),可能是Ceg1上Cet1结合位点的组成部分。