Suppr超能文献

一种智能糖尿病软件原型:预测血糖水平并推荐治疗方案变更。

An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes.

作者信息

Otto E, Semotok C, Andrysek J, Basir O

机构信息

School of Engineering, University of Guelph, Ontario, Canada.

出版信息

Diabetes Technol Ther. 2000 Winter;2(4):569-76. doi: 10.1089/15209150050501989.

Abstract

Maintaining optimal blood glucose (BG) control is difficult for type 1 diabetes mellitus (T1DM) patients when typical daily regimens of food, insulin and exercise are altered. Artificial intelligence (AI) systems consisting of treatment algorithms calibrated through large datasets of patient specific information may offer a solution. Such a system can predict BG level changes resulting from regimen disturbances and recommend regimen changes for compensation. A software prototype based on neural network, fuzzy logic, and expert system concepts was developed and evaluated to determine feasibility and efficacy of a patient specific prediction model. BG data are the primary driver for adapting existing functions to patient specific prediction algorithms. Mean absolute percent error (MAPE) between actual and predicted BG values from inputs of daily insulin, food, and exercise information for an T1DM test subject was 10.5% using a calibrated model. The prototype is limited by the requirement for a rigid testing schedule, human error and situational circumstances such as alcohol consumption, illness, infection, stress, and significant hormonal imbalances. No significant conclusions regarding model validity can be drawn due to limited evaluation process and subject sample size, although the prototype has demonstrated viability as a learning tool for diabetes patients. Increased impetus for further development of this prototype and similar AI models may materialize when more effective diagnostic and data capture tools become available to reduce testing and improve accuracy of the model with more input data.

摘要

对于1型糖尿病(T1DM)患者而言,当日常的饮食、胰岛素和运动方案发生改变时,维持最佳血糖(BG)控制颇具难度。由通过大量患者特定信息数据集校准的治疗算法组成的人工智能(AI)系统或许能提供一种解决方案。这样的系统可以预测方案干扰导致的血糖水平变化,并推荐用于补偿的方案变更。开发并评估了一个基于神经网络、模糊逻辑和专家系统概念的软件原型,以确定患者特定预测模型的可行性和有效性。血糖数据是使现有功能适应患者特定预测算法的主要驱动因素。对于一名T1DM测试对象,使用校准模型时,根据每日胰岛素、食物和运动信息输入得出的实际血糖值与预测血糖值之间的平均绝对百分比误差(MAPE)为10.5%。该原型受到严格测试时间表要求、人为误差以及诸如饮酒、疾病、感染、压力和显著激素失衡等情境因素的限制。尽管该原型已证明作为糖尿病患者学习工具的可行性,但由于评估过程和受试者样本量有限,无法就模型有效性得出重大结论。当有更有效的诊断和数据采集工具可用,以减少测试并通过更多输入数据提高模型准确性时,进一步开发该原型及类似AI模型的动力可能会增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验