Segel S A, Fanelli C G, Dence C S, Markham J, Videen T O, Paramore D S, Powers W J, Cryer P E
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Diabetes. 2001 Aug;50(8):1911-7. doi: 10.2337/diabetes.50.8.1911.
Recent antecedent hypoglycemia has been found to shift glycemic thresholds for autonomic (including adrenomedullary epinephrine), symptomatic, and other responses to subsequent hypoglycemia to lower plasma glucose concentrations. This change in threshold is the basis of the clinical syndromes of hypoglycemia unawareness and, in part, defective glucose counterregulation and the unifying concept of hypoglycemia-associated autonomic failure in type 1 diabetes. We tested in healthy young adults the hypothesis that recent antecedent hypoglycemia increases blood-to-brain glucose transport, a plausible mechanism of this phenomenon. Eight subjects were studied after euglycemia, and nine were studied after approximately 24 h of interprandial hypoglycemia ( approximately 55 mg/dl, approximately 3.0 mmol/l). The latter were shown to have reduced plasma epinephrine (P = 0.009), neurogenic symptoms (P = 0.009), and other responses to subsequent hypoglycemia. Global bihemispheric blood-to-brain glucose transport and cerebral glucose metabolism were calculated from rate constants derived from blood and brain time-activity curves-the latter determined by positron emission tomography (PET)-after intravenous injection of [1-(11)C]glucose at clamped plasma glucose concentrations of 65 mg/dl (3.6 mmol/l). For these calculations, a model was used that includes a fourth rate constant to account for egress of [(11)C] metabolites. Cerebral blood flow was measured with intravenous [(15)O]water using PET. After euglycemia and after hypoglycemia, rates of blood-to-brain glucose transport (24.6 +/- 2.3 and 22.4 +/- 2.4 micromol. 100 g(-1). min(-1), respectively), cerebral glucose metabolism (16.8 +/- 0.9 and 15.9 +/- 0.9 micromol. 100 g(-1). min(-1), respectively) and cerebral blood flow (56.8 +/- 3.9 and 53.3 +/- 4.4 ml. 100 g(-1). min(-1), respectively) were virtually identical. These data do not support the hypothesis that recent antecedent hypoglycemia increases blood-to-brain glucose transport during subsequent hypoglycemia. They do not exclude regional increments in blood-to-brain glucose transport. Alternatively, the fundamental alteration might lie beyond the blood-brain barrier.
近期发生的低血糖已被发现会使自主神经(包括肾上腺髓质肾上腺素)、症状性及其他对后续低血糖反应的血糖阈值向更低的血浆葡萄糖浓度偏移。这种阈值变化是低血糖无意识临床综合征的基础,部分也是1型糖尿病中葡萄糖反向调节缺陷及低血糖相关自主神经功能衰竭这一统一概念的基础。我们在健康年轻成年人中测试了这样一个假设,即近期发生的低血糖会增加血脑葡萄糖转运,这是该现象的一个合理机制。8名受试者在血糖正常后接受研究,9名受试者在餐后约24小时低血糖(约55mg/dl,约3.0mmol/l)后接受研究。结果显示,后者血浆肾上腺素降低(P = 0.009)、神经源性症状减少(P = 0.009)以及对后续低血糖的其他反应减弱。在血浆葡萄糖浓度钳定在65mg/dl(3.6mmol/l)时静脉注射[1-(11)C]葡萄糖后,根据从血液和脑时间-活性曲线得出的速率常数(后者由正电子发射断层扫描(PET)测定)计算全脑半球血脑葡萄糖转运和脑葡萄糖代谢。对于这些计算,使用了一个包含第四个速率常数以解释[(11)C]代谢物流出的模型。使用PET通过静脉注射[(15)O]水测量脑血流量。血糖正常后和低血糖后,血脑葡萄糖转运速率(分别为24.6±2.3和22.4±2.4μmol·100g(-1)·min(-1))、脑葡萄糖代谢速率(分别为16.8±0.9和15.9±0.9μmol·100g(-1)·min(-1))以及脑血流量(分别为56.8±3.9和53.3±4.4ml·100g(-1)·min(-1))实际上是相同的。这些数据不支持近期发生的低血糖会在后续低血糖期间增加血脑葡萄糖转运这一假设。它们并不排除血脑葡萄糖转运的局部增加。或者,根本改变可能存在于血脑屏障之外。