Kordylewski H, Graupe D
Knowledge Systems Institute, 3420 Main Street, Skokie, IL 60076, USA.
Neurol Res. 2001 Jul;23(5):472-81. doi: 10.1179/016164101101198866.
The paper describes the application of a neural network (ANN) for controlling a functional neuromuscular stimulation (FNS) system to facilitate patient-responsive ambulation by paralyzed patients with traumatic, thoracic-level spinal cord injuries. The particular ANN that is employed is a modified Adaptive-Resonance-Theory (ART-1) network. It serves as a controller in an FNS system (the Parastep system) that is presently in use by approximately 500 patients worldwide (but still without ANN control) and which was the first and only FNS system approved by FDA. The proposed neural network discriminates above-lesion upper-trunk electromyographic (EMG) time series to activate standing and walking functions under FNS and controls FNS stimuli levels using response-EMG signals. For this particular application, several modifications are introduced into the standard ART-1 ANN. First, a modified on-line learning rule is proposed. The new rule assures bi-directional modification of the stored patterns and prevents noise interference. Second, a new reset rule is proposed, which prevents 'exact matching' when the input is a subset of the chosen pattern. A single ART-1-based structure is being applied to solving two problems, namely (1) signal pattern recognition and limb function determination, and (2) control of stimulation levels. This also facilitates ambulation of paraplegics under FNS, with adequate patient interaction in initial system training, retraining the network when needed, and in allowing patient's manual over-ride in the case of error, where any manual over-ride serves as a re-training input to the neural network. The ANN control facilitates continuous update of control settings during normal use, without formal retraining.
本文描述了一种神经网络(ANN)在控制功能性神经肌肉刺激(FNS)系统中的应用,该系统用于帮助患有创伤性胸段脊髓损伤的瘫痪患者实现响应患者需求的行走功能。所采用的特定神经网络是一种改进的自适应共振理论(ART-1)网络。它在一个FNS系统(Parastep系统)中作为控制器,目前全球约有500名患者正在使用该系统(但仍无ANN控制),并且它是第一个也是唯一获得美国食品药品监督管理局(FDA)批准的FNS系统。所提出的神经网络能够区分损伤平面以上的上躯干肌电图(EMG)时间序列,以在FNS下激活站立和行走功能,并使用响应性EMG信号控制FNS刺激水平。针对这一特定应用,对标准的ART-1 ANN进行了若干修改。首先,提出了一种改进的在线学习规则。新规则确保对存储模式进行双向修改,并防止噪声干扰。其次,提出了一种新的重置规则,当输入是所选模式的子集时,可防止“精确匹配”。基于单个ART-1的结构被应用于解决两个问题,即(1)信号模式识别和肢体功能确定,以及(2)刺激水平控制。这也有助于截瘫患者在FNS下行走,在初始系统训练中有足够的患者交互,在需要时重新训练网络,并在出现错误时允许患者手动 override,其中任何手动 override都作为神经网络的再训练输入。ANN控制有助于在正常使用期间持续更新控制设置,而无需进行正式的再训练。