Suppr超能文献

利用噪声群体编码进行高效计算和线索整合。

Efficient computation and cue integration with noisy population codes.

作者信息

Deneve S, Latham P E, Pouget A

机构信息

Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.

出版信息

Nat Neurosci. 2001 Aug;4(8):826-31. doi: 10.1038/90541.

Abstract

The brain represents sensory and motor variables through the activity of large populations of neurons. It is not understood how the nervous system computes with these population codes, given that individual neurons are noisy and thus unreliable. We focus here on two general types of computation, function approximation and cue integration, as these are powerful enough to handle a range of tasks, including sensorimotor transformations, feature extraction in sensory systems and multisensory integration. We demonstrate that a particular class of neural networks, basis function networks with multidimensional attractors, can perform both types of computation optimally with noisy neurons. Moreover, neurons in the intermediate layers of our model show response properties similar to those observed in several multimodal cortical areas. Thus, basis function networks with multidimensional attractors may be used by the brain to compute efficiently with population codes.

摘要

大脑通过大量神经元的活动来表征感觉和运动变量。鉴于单个神经元存在噪声且因此不可靠,目前尚不清楚神经系统如何利用这些群体编码进行计算。我们在此关注两种一般类型的计算,即函数逼近和线索整合,因为它们强大到足以处理一系列任务,包括感觉运动转换、感觉系统中的特征提取以及多感觉整合。我们证明,一类特定的神经网络,即具有多维吸引子的基函数网络,可以在存在噪声的神经元情况下最优地执行这两种类型的计算。此外,我们模型中间层的神经元表现出与在几个多模态皮层区域观察到的响应特性相似的特性。因此,大脑可能利用具有多维吸引子的基函数网络来有效地利用群体编码进行计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验