Suppr超能文献

塞姆利基森林病毒融合蛋白可溶性形式的体内生成与特性分析

In vivo generation and characterization of a soluble form of the Semliki forest virus fusion protein.

作者信息

Lu Y E, Eng C H, Shome S G, Kielian M

机构信息

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

J Virol. 2001 Sep;75(17):8329-39. doi: 10.1128/jvi.75.17.8329-8339.2001.

Abstract

During infection of host cells, a number of enveloped animal viruses are known to produce soluble forms of viral membrane glycoproteins lacking the transmembrane domain. The roles of such soluble glycoproteins in viral life cycles are incompletely understood, but in several cases they are believed to modulate host immune response and viral pathogenesis. Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells through low-pH-dependent fusion and buds from the plasma membrane. Fusion is mediated by the E1 subunit of the SFV spike protein. Previous studies described the in vivo generation of E1s, a truncated soluble form of E1, under conditions in which budding is inhibited in mammalian host cells. We have here examined the properties of E1s generation and the biological activity of E1s. E1s cleavage required spike protein transport out of the endoplasmic reticulum and was independent of virus infection. Cell surface E1 efficiently acted as a precursor for E1s. E1s generation was strongly pH dependent in BHK cells, with optimal cleavage at a pH of < or =7.0, conditions that inhibited the budding of SFV but not the budding of the rhabdovirus vesicular stomatitis virus. The pH dependence of E1s production and SFV budding was unaffected by the stability of the spike protein dimer but was a function of the host cell. Similar to the intact virus and in vitro-generated E1 ectodomain, treatment of E1s at low pH in the presence of target membranes triggered specific acid-dependent conformational changes. Thus, under a variety of conditions, SFV-infected cells can produce a soluble form of E1 that is biologically active.

摘要

在宿主细胞感染期间,已知许多包膜动物病毒会产生缺乏跨膜结构域的病毒膜糖蛋白可溶性形式。此类可溶性糖蛋白在病毒生命周期中的作用尚未完全明了,但在某些情况下,人们认为它们可调节宿主免疫反应和病毒发病机制。塞姆利基森林病毒(SFV)是一种包膜甲病毒,通过低pH依赖的融合方式感染细胞,并从质膜出芽。融合由SFV刺突蛋白的E1亚基介导。先前的研究描述了在哺乳动物宿主细胞中出芽受到抑制的条件下,E1s(E1的一种截短可溶性形式)在体内的产生。我们在此研究了E1s产生的特性及其生物学活性。E1s的切割需要刺突蛋白从内质网转运出来,且与病毒感染无关。细胞表面的E1有效地充当了E1s的前体。在BHK细胞中,E1s的产生强烈依赖于pH,在pH≤7.0时切割最佳,此条件会抑制SFV的出芽,但不会抑制弹状病毒水疱性口炎病毒的出芽。E1s产生和SFV出芽对pH的依赖性不受刺突蛋白二聚体稳定性的影响,而是宿主细胞的一种功能。与完整病毒和体外产生的E1胞外结构域类似,在存在靶膜的情况下,在低pH条件下处理E1s会引发特定的酸依赖性构象变化。因此,在各种条件下,感染SFV的细胞都能产生具有生物学活性的E1可溶性形式。

相似文献

1
In vivo generation and characterization of a soluble form of the Semliki forest virus fusion protein.
J Virol. 2001 Sep;75(17):8329-39. doi: 10.1128/jvi.75.17.8329-8339.2001.
2
Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein.
J Virol. 1994 Nov;68(11):6940-6. doi: 10.1128/JVI.68.11.6940-6946.1994.
3
Formation and characterization of the trimeric form of the fusion protein of Semliki Forest Virus.
J Virol. 2000 Sep;74(17):7772-80. doi: 10.1128/jvi.74.17.7772-7780.2000.
5
E1 mutants identify a critical region in the trimer interface of the Semliki forest virus fusion protein.
J Virol. 2009 Nov;83(21):11298-306. doi: 10.1128/JVI.01147-09. Epub 2009 Aug 19.
6
Reversible acid-induced inactivation of the membrane fusion protein of Semliki Forest virus.
J Virol. 2005 Jun;79(12):7942-8. doi: 10.1128/JVI.79.12.7942-7948.2005.
8
Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein.
J Virol. 2009 May;83(9):4670-7. doi: 10.1128/JVI.02646-08. Epub 2009 Feb 25.
9
Mechanisms of mutations inhibiting fusion and infection by Semliki Forest virus.
J Cell Biol. 1996 Aug;134(4):863-72. doi: 10.1083/jcb.134.4.863.

引用本文的文献

2
Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models.
Front Microbiol. 2021 Oct 5;12:744164. doi: 10.3389/fmicb.2021.744164. eCollection 2021.
3
Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding.
Pathogens. 2021 Aug 4;10(8):984. doi: 10.3390/pathogens10080984.
5
The Alphavirus Exit Pathway: What We Know and What We Wish We Knew.
Viruses. 2018 Feb 22;10(2):89. doi: 10.3390/v10020089.
7
An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly.
Virology. 2015 Oct;484:412-420. doi: 10.1016/j.virol.2015.05.011. Epub 2015 Jun 6.
8
Enhanced production of Chikungunya virus-like particles using a high-pH adapted spodoptera frugiperda insect cell line.
PLoS One. 2014 Apr 8;9(4):e94401. doi: 10.1371/journal.pone.0094401. eCollection 2014.
9

本文引用的文献

2
Formation and characterization of the trimeric form of the fusion protein of Semliki Forest Virus.
J Virol. 2000 Sep;74(17):7772-80. doi: 10.1128/jvi.74.17.7772-7780.2000.
3
Semliki forest virus budding: assay, mechanisms, and cholesterol requirement.
J Virol. 2000 Sep;74(17):7708-19. doi: 10.1128/jvi.74.17.7708-7719.2000.
5
Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses.
Subcell Biochem. 2000;34:409-55. doi: 10.1007/0-306-46824-7_11.
7
An epitope of the Semliki Forest virus fusion protein exposed during virus-membrane fusion.
J Virol. 1999 Dec;73(12):10029-39. doi: 10.1128/JVI.73.12.10029-10039.1999.
8
The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.
Arch Virol Suppl. 1999;15:159-69. doi: 10.1007/978-3-7091-6425-9_11.
9
Retrograde protein translocation: ERADication of secretory proteins in health and disease.
Trends Biochem Sci. 1999 Jul;24(7):266-70. doi: 10.1016/s0968-0004(99)01420-6.
10
Brefeldin A: the advantage of being uncompetitive.
Cell. 1999 Apr 16;97(2):153-5. doi: 10.1016/s0092-8674(00)80724-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验