Biham O, Huang Z F, Malcai O, Solomon S
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026101. doi: 10.1103/PhysRevE.64.026101. Epub 2001 Jul 9.
Financial time series typically exhibit strong fluctuations that cannot be described by a Gaussian distribution. Recent empirical studies of stock market indices examined whether the distribution P(r) of returns r(tau) after some time tau can be described by a (truncated) Lévy-stable distribution L(alpha)(r) with some index 0<alpha< or =2. While the Lévy distribution cannot be expressed in a closed form, one can identify its parameters by testing the dependence of the central peak height on tau as well as the power-law decay of the tails. In an earlier study [R. N. Mantegna and H. E. Stanley, Nature (London) 376, 46 (1995)] it was found that the behavior of the central peak of P(r) for the Standard & Poor 500 index is consistent with the Lévy distribution with alpha=1.4. In a more recent study [P. Gopikrishnan et al., Phys. Rev. E 60, 5305 (1999)] it was found that the tails of P(r) exhibit a power-law decay, with an exponent alpha congruent with 3, thus deviating from the Lévy distribution. In this paper we study the distribution of returns in a generic model that describes the dynamics of stock market indices. For the distributions P(r) generated by this model, we observe that the scaling of the central peak is consistent with a Lévy distribution while the tails exhibit a power-law distribution with an exponent alpha>2, namely, beyond the range of Lévy-stable distributions. Our results are in agreement with both empirical studies and reconcile the apparent disagreement between their results.
金融时间序列通常呈现出强烈的波动,无法用高斯分布来描述。近期对股票市场指数的实证研究考察了经过一段时间τ后的收益r(τ)的分布P(r)是否可以用具有某个指数0<α≤2的(截断的) Lévy稳定分布L(α)(r)来描述。虽然Lévy分布无法以封闭形式表示,但可以通过测试中心峰值高度对τ的依赖性以及尾部的幂律衰减来确定其参数。在早期的一项研究[R. N. Mantegna和H. E. Stanley,《自然》(伦敦)376, 46 (1995)]中发现,标准普尔500指数的P(r)中心峰值的行为与α = 1.4的Lévy分布一致。在最近的一项研究[P. Gopikrishnan等人,《物理评论E》60, 5305 (1999)]中发现,P(r)的尾部呈现幂律衰减,指数α约为3,因此偏离了Lévy分布。在本文中,我们研究了一个描述股票市场指数动态的通用模型中的收益分布。对于该模型生成的分布P(r),我们观察到中心峰值的标度与Lévy分布一致,而尾部呈现指数α>2的幂律分布,即超出了Lévy稳定分布的范围。我们的结果与两项实证研究均一致,并调和了它们结果之间明显的分歧。