Lobmaier C, Hawa G, Götzinger M, Wirth M, Pittner F, Gabor F
Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
J Mol Recognit. 2001 Jul-Aug;14(4):215-22. doi: 10.1002/jmr.536.
Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a detection limit in the subnanomolar range. The ease of colloid-surface preparation and the high sensitivity makes fluorescence enhancement at colloid-coated microplates a valuable tool for studying reaction kinetics and performing rapid single-step immunoassays.
在分子水平上直接监测识别过程是研究反应动力学以评估亲和常数(如药物与受体的亲和常数)以及设计快速单步免疫分析的重要工具。目前用于获取结合过程信息的方法主要依赖于表面等离子体共振。这些系统采用衰减全反射几何结构中的相干光激发,以区分溶液中表面结合的分子和游离分子。因此,化合物无需标记,但由于测量装置的复杂性,该方法成本较高。在本论文中,我们提出了一种简单的方法,利用表面结合的银胶体的荧光增强特性,对荧光团标记的化合物进行动力学单步生物识别分析。银胶体通过塑料表面的硅烷化作用结合到标准微孔板上。与本体溶液中距离较远的荧光团相比,靠近这种胶体涂层表面的荧光团荧光显著增强。因此,可以区分表面结合的荧光团和游离荧光团,例如,荧光团标记的抗体与固定在胶体表面的抗原结合会导致荧光强度增加。使用标准微孔板使该方法与传统微孔板处理和读取设备完全兼容。既不需要相干激光激发,也不需要衰减全反射几何结构,测量在标准荧光微孔板读数仪中以前表面几何结构进行,以氙闪光灯作为激发源。本文介绍了胶体涂层微孔板的制备方法和荧光增强生物识别分析方法。此外,还描述了系统性能对金属胶体涂层表面结构和性质的依赖性。一个双组分生物识别模型系统显示出亚纳摩尔范围内的检测限。胶体 - 表面制备的简便性和高灵敏度使胶体涂层微孔板上的荧光增强成为研究反应动力学和进行快速单步免疫分析的重要工具。