Cherstniakova S A, Bi D, Fuller D R, Mojsiak J Z, Collins J M, Cantilena L R
Division of Clinical Pharmacology and Medical Toxicology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
Drug Metab Dispos. 2001 Sep;29(9):1216-20.
Vanoxerine (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine; GBR12909) is a promising agent for the treatment of cocaine dependence. Knowledge of the major pathway for GBR12909 metabolism is important for prediction of the likelihood of drug-drug interactions, which may affect the therapeutic clinical outcome, when this agent is used in cocaine-dependent individuals receiving multiple drug therapy. We studied biotransformation of GBR12909 in human liver microsomes (n = 4), human hepatocytes, and microsomes containing cDNA-expressed human P450 isoforms with GBR12909 concentrations within the range of steady-state plasma concentrations detected in healthy volunteers. A high-pressure liquid chromatography assay was used to measure parent GBR12909 and its primary metabolite. GBR12909 was metabolized by human liver microsomes, hepatocytes, and cDNA-expressed human P450s to a single metabolite. Ketoconazole, a selective inhibitor of CYP3A, reduced GBR12909 biotransformation in human liver microsomes and primary hepatocytes by 92 +/- 2 and 92.4 +/- 0.4%, respectively. Quercetin (an inhibitor of CYP2C8/3A4) was a less effective inhibitor producing 62 +/- 22% inhibition in human liver microsomes and 54 +/- 35% in hepatocytes. Other P450 selective inhibitors did not decrease GBR12909 biotransformation more than 29% in either human liver microsomes or hepatocytes with the exception of chlorzoxazone (CYP2E1), which inhibited GBR12909 biotransformation by 71.4 +/- 18.5% in primary human hepatocytes. Ciprofloxacin (CYP1A2), sulfaphenazole (CYP2C9), quinidine (CYP2D6), chlorzoxazone (CYP2E1), and mephenytoin (CYP2C19) did not demonstrate statistically significant inhibition (p > 0.05) of GBR12909 biotransformation in liver microsomes. cDNA-expressed P450 3A4 metabolized GBR12909 to a greater extent than 2C8 and 2E1. These data suggest the possibility that multiple P450 isoforms may be involved in human GBR12909 metabolism but that CYP3A appears to be the major enzyme responsible for human GBR12909 biotransformation.
瓦诺西汀(1-[2-[双(4-氟苯基)甲氧基]乙基]-4-(3-苯基丙基)哌嗪;GBR12909)是一种很有前景的治疗可卡因成瘾的药物。了解GBR12909的主要代谢途径对于预测药物相互作用的可能性很重要,当该药物用于接受多种药物治疗的可卡因成瘾个体时,药物相互作用可能会影响治疗的临床结果。我们研究了GBR12909在人肝微粒体(n = 4)、人肝细胞以及含有cDNA表达的人细胞色素P450同工酶的微粒体中的生物转化,GBR12909的浓度在健康志愿者稳态血浆浓度范围内。采用高压液相色谱法测定母体GBR12909及其主要代谢产物。GBR12909在人肝微粒体、肝细胞和cDNA表达的人细胞色素P450作用下代谢为单一代谢产物。酮康唑是CYP3A的选择性抑制剂,分别使GBR12909在人肝微粒体和原代肝细胞中的生物转化降低了92±2%和92.4±0.4%。槲皮素(CYP2C8/3A4抑制剂)的抑制效果较差,在人肝微粒体中的抑制率为62±2%±22%,在肝细胞中的抑制率为54±35%。除氯唑沙宗(CYP2E1)外,其他细胞色素P450选择性抑制剂在人肝微粒体或肝细胞中对GBR12909生物转化的降低均不超过29%,氯唑沙宗在原代人肝细胞中使GBR12909生物转化降低了71.4±18.5%。环丙沙星(CYP1A2)、磺胺苯吡唑(CYP2C9)、奎尼丁(CYP2D6)、氯唑沙宗(CYP2E1)和美芬妥英(CYP2C19)在肝微粒体中对GBR12生物转化没有显示出统计学上的显著抑制作用(p>0.05)。cDNA表达的细胞色素P450 3A4对GBR12909的代谢程度高于2C8和2E1。这些数据表明,多种细胞色素P450同工酶可能参与人GBR12909的代谢,但CYP3A似乎是负责GBR12909生物转化的主要酶。