Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J
Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie der Philipps-Universität Marburg, Marburg, Germany.
J Neurochem. 2001 Aug;78(4):909-19. doi: 10.1046/j.1471-4159.2001.00463.x.
Preconditioning by a sublethal stimulus induces tolerance to a subsequent, otherwise lethal insult and it has been suggested that reactive oxygen species (ROS) are involved in this phenomenon. In the present study, we determined whether preconditioning activates the transcription factor nuclear factor-kappaB (NF-kappaB) and how this activation contributes to preconditioning-induced inhibition of neuronal apoptosis. Preconditioning was performed by incubating mixed cultures of neurons and astrocytes from neonatal rat hippocampus with xanthine/xanthine oxidase or FeSO4 for 15 min followed by 24 h of recovery which protected the neurons against subsequent staurosporine-induced (200 nM, 24 h) apoptosis. The cellular ROS content increased during preconditioning, but returned to basal levels after removal of xanthine/xanthine oxidase or FeSO4. We detected a transient activation of NF-kappaB 4 h after preconditioning as shown by immunocytochemistry, by a decrease in the protein level of IkappaBalpha as well as by electrophoretic mobility shift assay. Preconditioning-mediated neuroprotection was abolished by antioxidants, inhibitors of NF-kappaB activation and cycloheximide suggesting the involvement of ROS, an activation of NF-kappaB and de novo protein synthesis in preconditioning-mediated rescue pathways. Furthermore, preconditioning increased the protein level of Mn-superoxide dismutase which could be blocked by antioxidants, cycloheximide and kappaB decoy DNA. Our data suggest that inhibition of staurosporine-induced neuronal apoptosis by preconditioning with xanthine/xanthine oxidase or FeSO4 involves an activation of NF-kappaB and an increase in the protein level of Mn-superoxide dismutase.
亚致死刺激预处理可诱导机体对随后的致死性损伤产生耐受性,有人提出活性氧(ROS)参与了这一现象。在本研究中,我们确定预处理是否激活转录因子核因子-κB(NF-κB)以及这种激活如何促进预处理诱导的神经元凋亡抑制。预处理是通过将新生大鼠海马体的神经元和星形胶质细胞混合培养物与黄嘌呤/黄嘌呤氧化酶或硫酸亚铁孵育15分钟,随后恢复24小时来进行的,这可保护神经元免受随后的星形孢菌素诱导(200 nM,24小时)的凋亡。预处理期间细胞ROS含量增加,但去除黄嘌呤/黄嘌呤氧化酶或硫酸亚铁后恢复到基础水平。我们通过免疫细胞化学、IκBα蛋白水平的降低以及电泳迁移率变动分析发现预处理后4小时NF-κB有短暂激活。抗氧化剂、NF-κB激活抑制剂和环己酰亚胺可消除预处理介导的神经保护作用,提示ROS、NF-κB激活和从头蛋白质合成参与了预处理介导的挽救途径。此外,预处理增加了锰超氧化物歧化酶的蛋白水平,这可被抗氧化剂、环己酰亚胺和κB诱饵DNA阻断。我们的数据表明,用黄嘌呤/黄嘌呤氧化酶或硫酸亚铁预处理抑制星形孢菌素诱导的神经元凋亡涉及NF-κB的激活和锰超氧化物歧化酶蛋白水平的增加。