Cuzzocrea S, Reiter R J
Institute of Pharmacology, School of Medicine, University of Messina, Torre Biologica, Policlinico Universitario, Via C. Valeria-Gazzi, 98100, Messina, Italy.
Eur J Pharmacol. 2001 Aug 24;426(1-2):1-10. doi: 10.1016/s0014-2999(01)01175-x.
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants (such as peroxynitrite) as mediators of inflammation, shock and ischemia/reperfusion injury. The aim of this review is to describe recent developments in the field of oxidative stress research. The first part of the review focuses on the roles of reactive oxygen species in shock, inflammation and ischemia/reperfusion injury. The second part of the review described the pharmacological action of melatonin in shock, ischemia/reperfusion, and inflammation. The role of reactive oxygen species: Immunohistochemical and biochemical evidence demonstrate the production of reactive oxygen species in shock, inflammation and ischemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include the initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium ATP-ase activity, inactivation of membrane sodium channels, and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock, inflammation and ischemia and reperfusion. Treatment with melatonin has been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock, inflammation and ischemia/reperfusion injury. Reactive oxygen species (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single-strand breakage, with subsequent activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. Recently, it has been demonstrated that melatonin inhibits the activation of poly (ADP-ribose) synthetase, and prevents the organ injury associated with shock, inflammation and ischemia and reperfusion.
大量的间接证据表明,氧衍生的自由基(特别是超氧化物和羟基自由基)以及高能氧化剂(如过氧亚硝酸盐)是炎症、休克和缺血/再灌注损伤的介质。本综述的目的是描述氧化应激研究领域的最新进展。综述的第一部分重点关注活性氧在休克、炎症和缺血/再灌注损伤中的作用。综述的第二部分描述了褪黑素在休克、缺血/再灌注和炎症中的药理作用。活性氧的作用:免疫组织化学和生化证据表明,在休克、炎症和缺血/再灌注损伤中会产生活性氧。活性氧可引发一系列毒性氧化反应。这些反应包括引发脂质过氧化、直接抑制线粒体呼吸链酶、使甘油醛-3-磷酸脱氢酶失活、抑制膜钠/钾ATP酶活性、使膜钠通道失活以及蛋白质的其他氧化修饰。所有这些毒性可能在休克、炎症、缺血和再灌注的病理生理学中起作用。已证明褪黑素治疗可在体内预防与休克、炎症和缺血/再灌注损伤相关的延迟性血管失代偿和细胞能量衰竭。活性氧(如超氧化物、过氧亚硝酸盐、羟基自由基和过氧化氢)都是能够引发DNA单链断裂的潜在反应物,随后激活核酶聚(ADP-核糖)合成酶(PARS),导致细胞最终严重能量耗竭和坏死型细胞死亡。最近,已证明褪黑素可抑制聚(ADP-核糖)合成酶的激活,并预防与休克、炎症和缺血及再灌注相关的器官损伤。