Suppr超能文献

将Thy-1、GM1和交联磷脂类似物分配到在支持的模型膜单层中重构的脂筏中。

Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers.

作者信息

Dietrich C, Volovyk Z N, Levi M, Thompson N L, Jacobson K

机构信息

Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10642-7. doi: 10.1073/pnas.191168698. Epub 2001 Sep 4.

Abstract

As shown earlier, raft-like domains resembling those thought to be present in natural cell membranes can be formed in supported planar lipid monolayers. These liquid-ordered domains coexist with a liquid-disordered phase and form in monolayers prepared both from synthetic lipid mixtures and lipid extracts of the brush border membrane of mouse kidney cells. The domains are detergent-resistant and are highly enriched in the glycosphingolipid GM1. In this work, the properties of these raft-like domains are further explored and compared with properties thought to be central to raft function in plasma membranes. First, it is shown that domain formation and disruption critically depends on the cholesterol density and can be controlled reversibly by treating the monolayers with the cholesterol-sequestering reagent methyl-beta-cyclodextrin. Second, the glycosylphosphatidylinositol-anchored cell-surface protein Thy-1 significantly partitions into the raft-like domains. The extent of this partitioning is reduced when the monolayers contain GM1, indicating that different molecules can compete for domain occupation. Third, the partitioning of a saturated phospholipid analog into the raft phase is dramatically increased (15% to 65%) after cross-linking with antibodies, whereas the distribution of a doubly unsaturated phospholipid analog is not significantly affected by cross-linking (approximately 10%). This result demonstrates that cross-linking, a process known to be important for certain cell-signaling processes, can selectively translocate molecules to liquid-ordered domains.

摘要

如前所示,在支持的平面脂质单层中可以形成类似于天然细胞膜中存在的筏状结构域。这些液相有序结构域与液相无序相共存,并在由合成脂质混合物和小鼠肾细胞刷状缘膜脂质提取物制备的单层中形成。这些结构域具有抗去污剂能力,并且高度富含糖鞘脂GM1。在这项工作中,进一步探索了这些筏状结构域的特性,并与质膜中被认为对筏功能至关重要的特性进行了比较。首先,结果表明结构域的形成和破坏关键取决于胆固醇密度,并且可以通过用胆固醇螯合剂甲基-β-环糊精处理单层来可逆地控制。其次,糖基磷脂酰肌醇锚定的细胞表面蛋白Thy-1显著地分配到筏状结构域中。当单层含有GM1时,这种分配程度降低,表明不同分子可以竞争占据结构域。第三,与抗体交联后,饱和磷脂类似物在筏相中的分配显著增加(从15%到65%),而双不饱和磷脂类似物的分布不受交联的显著影响(约10%)。这一结果表明,交联这一已知对某些细胞信号传导过程很重要的过程,可以选择性地将分子转运到液相有序结构域。

相似文献

1
Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10642-7. doi: 10.1073/pnas.191168698. Epub 2001 Sep 4.
2
Lipid rafts reconstituted in model membranes.
Biophys J. 2001 Mar;80(3):1417-28. doi: 10.1016/S0006-3495(01)76114-0.
3
Seeing is believing: visualization of rafts in model membranes.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10517-8. doi: 10.1073/pnas.191386898.
6
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.
7
Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes.
Mol Biol Cell. 2004 Jun;15(6):2580-92. doi: 10.1091/mbc.e03-08-0574. Epub 2004 Mar 19.
8
Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane.
Biochem J. 1998 Oct 15;335 ( Pt 2)(Pt 2):433-40. doi: 10.1042/bj3350433.
9
Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.
Methods Enzymol. 2018;598:267-282. doi: 10.1016/bs.mie.2017.06.038. Epub 2017 Oct 31.
10
Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
Subcell Biochem. 2004;37:167-215. doi: 10.1007/978-1-4757-5806-1_5.

引用本文的文献

1
Interfacial microrheology of DPPC monolayers at the air-water interface.
Soft Matter. 2011 Sep 7;7(17):7782-7789. doi: 10.1039/c1sm05383c. Epub 2011 Jul 20.
2
Probing Gag-Env dynamics at HIV-1 assembly sites using live-cell microscopy.
J Virol. 2024 Sep 17;98(9):e0064924. doi: 10.1128/jvi.00649-24. Epub 2024 Aug 13.
3
Understanding Aβ Peptide Binding to Lipid Membranes: A Biophysical Perspective.
Int J Mol Sci. 2024 Jun 10;25(12):6401. doi: 10.3390/ijms25126401.
4
What's past is prologue: FRAP keeps delivering 50 years later.
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.
5
Glycosphingolipid and Glycosylphosphatidylinositol Affect Each Other in and on the Cell.
Chembiochem. 2023 Jul 3;24(13):e202200761. doi: 10.1002/cbic.202200761. Epub 2023 Jun 1.
6
Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles.
Bioconjug Chem. 2022 Apr 20;33(4):736-746. doi: 10.1021/acs.bioconjchem.2c00115. Epub 2022 Apr 1.
7
Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183774. doi: 10.1016/j.bbamem.2021.183774. Epub 2021 Sep 14.
8
Low-flux scanning electron diffraction reveals substructures inside the ordered membrane domain.
Sci Rep. 2020 Dec 21;10(1):22188. doi: 10.1038/s41598-020-79083-7.
9
Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains.
Front Cell Dev Biol. 2020 Oct 29;8:589799. doi: 10.3389/fcell.2020.589799. eCollection 2020.
10
Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective.
Viruses. 2020 Jul 10;12(7):745. doi: 10.3390/v12070745.

本文引用的文献

1
Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection.
EMBO Rep. 2000 Aug;1(2):190-6. doi: 10.1093/embo-reports/kvd025.
3
Lipid rafts reconstituted in model membranes.
Biophys J. 2001 Mar;80(3):1417-28. doi: 10.1016/S0006-3495(01)76114-0.
4
Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform.
Glycoconj J. 2000 Mar-Apr;17(3 -4):191-7. doi: 10.1023/a:1026585006064.
5
Segregation of co-stimulatory components into specific T cell surface lipid rafts.
Eur J Immunol. 2001 Feb;31(2):467-73. doi: 10.1002/1521-4141(200102)31:2<467::aid-immu467>3.0.co;2-1.
8
How cells handle cholesterol.
Science. 2000 Dec 1;290(5497):1721-6. doi: 10.1126/science.290.5497.1721.
9
Sphingolipids: second messengers, mediators and raft constituents in signaling.
Immunol Today. 2000 Nov;21(11):555-60. doi: 10.1016/s0167-5699(00)01725-4.
10
Jamming the endosomal system: lipid rafts and lysosomal storage diseases.
Trends Cell Biol. 2000 Nov;10(11):459-62. doi: 10.1016/s0962-8924(00)01847-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验