Akse J R, Thompson J O
Umpqua Research Company, Myrtle Creek, OR 97457, USA.
Life Support Biosph Sci. 1995 Spring;1(3-4):159-67.
The Pd on Al2O3 catalyst used in the projected Space Station's Trace Contaminant Control System (TCCS) catalytic oxidizer can be poisoned by volatile halogen-, sulfur-, and nitrogen-containing organic species. Catalytically Active Regenerable Sorbents (CARS) eliminate these problematic contaminants and the large carbon bed used for their elimination in a three-step process. Contaminants are conventionally adsorbed by the CARS bed. After saturation, the bed is connected to an off-line recirculation loop, filled with hydrogen, and then heated. At temperature, contaminants are hydrogenated on catalytic sites within the bed, forming simple alkanes and acid gases that are efficiently converted to innocuous salts in an in-line alkaline bed. The CARS bed is regenerated by this cycle and alkane gases are released to be safely oxidized in the catalytic oxidizer. A challenge mixture containing Freon-113, thiophene, trichloroethylene, Halon-1301, and dichloromethane at 1670, 75, 81, 68, and 83 mg/m3 was successfully treated using this technology, demonstrating the CARS feasibility.