Suppr超能文献

葫芦科植物的重力形态建成:黄瓜幼苗中吸器细胞的发育及重力感受机制

Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings.

作者信息

Takahashi H, Fujii N, Kamada M, Higashitani A, Yamazaki Y, Kobayashi A, Takano M, Yamasaki S, Sakata T, Mizuno H, Kaneko Y, Murata T, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K

机构信息

Institute of Genetic Ecology, Tohoku University, Sendai.

出版信息

Biol Sci Space. 2000 Jun;14(2):64-74. doi: 10.2187/bss.14.64.

Abstract

We examined the effect of microgravity on the peg formation of cucumber seedlings for clarifying the mechanism of gravimorphogenesis in cucurbitaceous plants. The spaceflight experiments verified that gravity controls the formation of peg, hypocotyl hook and growth orientation of cucumber seedlings. Space-grown cucumber developed a peg on each side of the transition zone of the hypocotyl and root, indicating that on the ground peg formation is regulated negatively by gravity (Takahashi et al. 2000). It was found that the auxin-regulated gene, CS-IAA1, was strongly expressed in the transition zone where peg develops (Fujii et al. 2000). In the seedlings grown horizontally on the ground, CS-IAA1 transcripts were much abundant on the lower side of the transition zone, but no such differential expression of CS-IAA1 was observed in the space-grown cucumber (Kamada et al. 2000). These results imply that gravity plays a role in peg formation through auxin redistribution. By the negative control, peg formation on the upper side of the transition zone in the horizontally growing seedlings might be suppressed due to a reduction in auxin concentration. The threshold theory of auxin concentration accounted for the new concept, negative control of morphogenesis by gravity (Kamada et al. 2000). Anatomical studies have shown that there exists the target cells destined to be a peg and distinguishable at the early stage of the growth. Ultra-structural analysis suggested that endoplasmic reticulum develops well in the cells of the future peg. Furthermore, it was found that reorganization of cortical microtubules is required for the change in cell growth polarity in the process of peg formation. The spaceflight experiment with cucumber seedlings also suggested that in microgravity positive hydrotropic response of roots occurred without interference by gravitropic response (Takahashi et al. 1999b). Thus, this spaceflight experiment together with the ground-based studies has shown that cucumber seedling is an ideal for the study of gravimorphogenesis, hydrotropism and their interaction. Although peg formation is seen specifically in cucurbitaceous seedlings, it involves graviperception, auxin transport and redistribution and cytoskeletal modification for controlling cell growth polarity. This system could be a useful model for studying important current issues in plant biology.

摘要

为阐明葫芦科植物重力形态建成的机制,我们研究了微重力对黄瓜幼苗不定根原基形成的影响。太空飞行实验证实,重力控制着黄瓜幼苗不定根原基、下胚轴弯钩的形成以及生长方向。在太空中生长的黄瓜在下胚轴和根的过渡区两侧都形成了不定根原基,这表明在地面上,不定根原基的形成受到重力的负调控(高桥等人,2000年)。研究发现,生长素调节基因CS-IAA1在不定根原基发育的过渡区强烈表达(藤井等人,2000年)。在地面上水平生长的幼苗中,CS-IAA1转录本在过渡区的下侧大量存在,但在太空生长的黄瓜中未观察到CS-IAA1的这种差异表达(镰田等人,2000年)。这些结果表明,重力通过生长素重新分布在不定根原基形成中起作用。通过负调控,水平生长的幼苗过渡区上侧不定根原基的形成可能由于生长素浓度降低而受到抑制。生长素浓度阈值理论解释了重力对形态建成负调控的新概念(镰田等人,2000年)。解剖学研究表明,存在注定要形成不定根原基的靶细胞,并且在生长早期就可区分。超微结构分析表明,内质网在未来不定根原基的细胞中发育良好。此外,还发现不定根原基形成过程中细胞生长极性的变化需要皮层微管的重新组织。黄瓜幼苗的太空飞行实验还表明,在微重力条件下,根的正向水向性反应不受重力反应的干扰而发生(高桥等人,1999b)。因此,这项太空飞行实验与地面研究一起表明,黄瓜幼苗是研究重力形态建成、向水性及其相互作用的理想材料。虽然不定根原基的形成在葫芦科幼苗中是特异性的,但它涉及重力感知、生长素运输和重新分布以及细胞骨架修饰以控制细胞生长极性。该系统可能是研究植物生物学当前重要问题的有用模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验