Suppr超能文献

变形链球菌中groE操纵子的遗传与生理学分析以及HrcA阻遏物在应激基因调控和耐酸性中的作用

Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans.

作者信息

Lemos J A, Chen Y Y, Burne R A

机构信息

Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

出版信息

J Bacteriol. 2001 Oct;183(20):6074-84. doi: 10.1128/JB.183.20.6074-6084.2001.

Abstract

Our working hypothesis is that the major molecular chaperones DnaK and GroE play central roles in the ability of oral bacteria to cope with the rapid and frequent stresses encountered in oral biofilms, such as acidification and nutrient limitation. Previously, our laboratory partially characterized the dnaK operon of Streptococcus mutans (hrcA-grpE-dnaK) and demonstrated that dnaK is up-regulated in response to acid shock and sustained acidification (G. C. Jayaraman, J. E. Penders, and R. A. Burne, Mol. Microbiol. 25:329-341, 1997). Here, we show that the groESL genes of S. mutans constitute an operon that is expressed from a stress-inducible sigma(A)-type promoter located immediately upstream of a CIRCE element. GroEL protein and mRNA levels were elevated in cells exposed to a variety of stresses, including acid shock. A nonpolar insertion into hrcA was created and used to demonstrate that HrcA negatively regulates the expression of the groEL and dnaK operons. The SM11 mutant, which had constitutively high levels of GroESL and roughly 50% of the DnaK protein found in the wild-type strain, was more sensitive to acid killing and could not lower the pH as effectively as the parent. The acid-sensitive phenotype of SM11 was, at least in part, attributable to lower F(1)F(0)-ATPase activity. A minimum of 10 proteins, in addition to GroES-EL, were found to be up-regulated in SM11. The data clearly indicate that HrcA plays a key role in the regulation of chaperone expression in S. mutans and that changes in the levels of the chaperones profoundly influence acid tolerance.

摘要

我们的工作假设是,主要分子伴侣DnaK和GroE在口腔细菌应对口腔生物膜中快速且频繁遇到的压力(如酸化和营养限制)的能力方面发挥核心作用。此前,我们实验室对变形链球菌的dnaK操纵子(hrcA-grpE-dnaK)进行了部分表征,并证明dnaK在酸休克和持续酸化反应中上调(G.C.贾亚拉曼、J.E.彭德斯和R.A.伯恩,《分子微生物学》25:329-341,1997年)。在此,我们表明变形链球菌的groESL基因构成一个操纵子,该操纵子由位于CIRCE元件上游紧邻的应激诱导型sigma(A)型启动子表达。在暴露于包括酸休克在内的多种应激的细胞中,GroEL蛋白和mRNA水平升高。构建了一个非极性插入到hrcA中的突变体,并用于证明HrcA负向调节groEL和dnaK操纵子的表达。SM11突变体中GroESL水平持续较高,且DnaK蛋白含量约为野生型菌株中的50%,该突变体对酸杀伤更敏感,且降低pH值的效果不如亲本菌株。SM11的酸敏感表型至少部分归因于较低的F(1)F(0)-ATP酶活性。除了GroES-EL外,至少还有10种蛋白质在SM11中被上调。数据清楚地表明,HrcA在变形链球菌伴侣蛋白表达的调节中起关键作用,且伴侣蛋白水平的变化深刻影响酸耐受性。

相似文献

5
Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae.
Arch Pharm Res. 2008 Apr;31(4):462-7. doi: 10.1007/s12272-001-1179-4. Epub 2008 May 1.
7
hrcA, encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene.
J Bacteriol. 1998 Oct;180(19):5129-34. doi: 10.1128/JB.180.19.5129-5134.1998.
8
HrcA is a negative regulator of the dnaK and groESL operons of Streptococcus pyogenes.
Biochem Biophys Res Commun. 2003 Mar 21;302(4):722-7. doi: 10.1016/s0006-291x(03)00254-7.
10
Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681.
Syst Appl Microbiol. 1999 Sep;22(3):321-8. doi: 10.1016/S0723-2020(99)80039-3.

引用本文的文献

3
Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo.
Mol Microbiol. 2022 Feb;117(2):375-393. doi: 10.1111/mmi.14854. Epub 2021 Dec 18.
4
Peptides encoded in the RcrRPQ operon are essential for thermotolerance.
Microbiology (Reading). 2020 Mar;166(3):306-317. doi: 10.1099/mic.0.000887.
5
Dual-species biofilms of and exhibit more biomass and are mutually beneficial compared with single-species biofilms.
J Oral Microbiol. 2019 Mar 20;11(1):1581520. doi: 10.1080/20002297.2019.1581520. eCollection 2019.
6
Acid-resistant genes of oral plaque microbiome from the functional metagenomics.
J Oral Microbiol. 2018 Jan 30;10(1):1424455. doi: 10.1080/20002297.2018.1424455. eCollection 2018.
7
Acid Stress Response Mechanisms of Group B Streptococci.
Front Cell Infect Microbiol. 2017 Sep 7;7:395. doi: 10.3389/fcimb.2017.00395. eCollection 2017.
8
Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in .
Front Microbiol. 2017 Jun 8;8:962. doi: 10.3389/fmicb.2017.00962. eCollection 2017.
9
Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00847-16. Print 2017 Apr 15.
10

本文引用的文献

1
The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger.
Mol Microbiol. 2000 Dec;38(5):1093-103. doi: 10.1046/j.1365-2958.2000.02194.x.
2
Adaptation of oral streptococci to low pH.
Adv Microb Physiol. 2000;42:239-74. doi: 10.1016/s0065-2911(00)42004-7.
3
Molecular cloning, purification and immunological responses of recombinants GroEL and DnaK from Streptococcus pyogenes.
FEMS Immunol Med Microbiol. 2000 Jun;28(2):121-8. doi: 10.1111/j.1574-695X.2000.tb01465.x.
4
Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins.
Microbiology (Reading). 2000 Jan;146 ( Pt 1):107-117. doi: 10.1099/00221287-146-1-107.
6
Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH.
Mol Microbiol. 1999 Mar;31(5):1489-98. doi: 10.1046/j.1365-2958.1999.01292.x.
9
Negative regulation of bacterial heat shock genes.
Mol Microbiol. 1999 Jan;31(1):1-8. doi: 10.1046/j.1365-2958.1999.01166.x.
10
Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.
Oral Microbiol Immunol. 1998 Oct;13(5):292-300. doi: 10.1111/j.1399-302x.1998.tb00710.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验