Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens T H
Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
J Biol Chem. 2001 Dec 14;276(50):47411-20. doi: 10.1074/jbc.M108310200. Epub 2001 Oct 9.
The 100-kDa "a" subunit of the vacuolar proton-translocating ATPase (V-ATPase) is encoded by two genes in yeast, VPH1 and STV1. The Vph1p-containing complex localizes to the vacuole, whereas the Stv1p-containing complex resides in some other intracellular compartment, suggesting that the a subunit contains information necessary for the correct targeting of the V-ATPase. We show that Stv1p localizes to a late Golgi compartment at steady state and cycles continuously via a prevacuolar endosome back to the Golgi. V-ATPase complexes containing Vph1p and Stv1p also differ in their assembly properties, coupling of proton transport to ATP hydrolysis, and dissociation in response to glucose depletion. To identify the regions of the a subunit that specify these different properties, chimeras were constructed containing the cytosolic amino-terminal domain of one isoform and the integral membrane, carboxyl-terminal domain from the other isoform. Like the Stv1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Stv1p localized to the Golgi and the complex did not dissociate in response to glucose depletion. Like the Vph1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Vph1p localized to the vacuole and the complex exhibited normal dissociation upon glucose withdrawal. Interestingly, the V-ATPase complex containing the chimera with the carboxyl-terminal domain of Vph1p exhibited a higher coupling of proton transport to ATP hydrolysis than the chimera containing the carboxyl-terminal domain of Stv1p. Our results suggest that whereas targeting and in vivo dissociation are controlled by sequences located in the amino-terminal domains of the subunit a isoforms, coupling efficiency is controlled by the carboxyl-terminal region.
液泡质子转运ATP酶(V-ATPase)的100-kDa“a”亚基由酵母中的两个基因VPH1和STV1编码。含Vph1p的复合物定位于液泡,而含Stv1p的复合物存在于其他一些细胞内区室,这表明a亚基包含V-ATPase正确靶向所需的信息。我们发现,在稳态下Stv1p定位于晚期高尔基体区室,并通过前液泡内体持续循环回到高尔基体。含Vph1p和Stv1p的V-ATPase复合物在组装特性、质子转运与ATP水解的偶联以及对葡萄糖耗竭的解离方面也有所不同。为了确定a亚基中指定这些不同特性的区域,构建了嵌合体,其中包含一种异构体的胞质氨基末端结构域和另一种异构体的完整膜羧基末端结构域。与含Stv1p的复合物一样,含有Stv1p氨基末端结构域嵌合体的V-ATPase复合物定位于高尔基体,并且该复合物不会因葡萄糖耗竭而解离。与含Vph1p的复合物一样,含有Vph1p氨基末端结构域嵌合体的V-ATPase复合物定位于液泡,并且该复合物在葡萄糖撤除后表现出正常的解离。有趣的是,含有Vph1p羧基末端结构域嵌合体的V-ATPase复合物比含有Stv1p羧基末端结构域的嵌合体表现出更高的质子转运与ATP水解的偶联。我们的结果表明,虽然靶向和体内解离由a亚基异构体氨基末端结构域中的序列控制,但偶联效率由羧基末端区域控制。