Kang S C, Hong S H
INCOM I &C, R&D Center, Seoul, 135-280, Korea.
Stud Health Technol Inform. 2001;84(Pt 2):906-9.
One of the most significant features of diagnostic echocardiographic images is to reduce speckle noise and make better image quality. In this paper we proposed a simple and effective filter design for image denoising and contrast enhancement based on multiscale wavelet denoising method. Wavelet threshold algorithms replace wavelet coefficients with small magnitude by zero and keep or shrink the other coefficients. This is basically a local procedure, since wavelet coefficients characterize the local regularity of a function. After we estimate distribution of noise within echocardiographic image, then apply to fitness Wavelet threshold algorithm. A common way of the estimating the speckle noise level in coherent imaging is to calculate the mean-to-standard-deviation ratio of the pixel intensity, often termed the Equivalent Number of Looks(ENL), over a uniform image area. Unfortunately, we found this measure not very robust mainly because of the difficulty to identify a uniform area in a real image. For this reason, we will only use here the S/MSE ratio and which corresponds to the standard SNR in case of additivie noise. We have simulated some echocardiographic images by specialized hardware for real-time application;processing of a 512*512 images takes about 1 min. Our experiments show that the optimal threshold level depends on the spectral content of the image. High spectral content tends to over-estimate the noise standard deviation estimation performed at the finest level of the DWT. As a result, a lower threshold parameter is required to get the optimal S/MSE. The standard WCS theory predicts a threshold that depends on the number of signal samples only.
诊断超声心动图图像的最重要特征之一是减少斑点噪声并提高图像质量。在本文中,我们基于多尺度小波去噪方法提出了一种简单有效的滤波器设计,用于图像去噪和对比度增强。小波阈值算法将幅度较小的小波系数置零,并保留或收缩其他系数。这基本上是一个局部过程,因为小波系数表征了函数的局部正则性。在我们估计超声心动图图像中的噪声分布后,再应用适合的小波阈值算法。在相干成像中估计斑点噪声水平的一种常见方法是计算像素强度的均值与标准差之比,通常称为等效视数(ENL),在均匀图像区域上进行计算。不幸的是,我们发现这种测量方法不是很稳健,主要是因为在真实图像中难以识别均匀区域。因此,我们在这里仅使用信噪比(S/MSE),在加性噪声情况下它对应于标准信噪比。我们通过专门的硬件模拟了一些用于实时应用的超声心动图图像;处理一幅512×512的图像大约需要1分钟。我们的实验表明,最佳阈值水平取决于图像的频谱内容。高频谱内容往往会高估在离散小波变换(DWT)最精细级别执行的噪声标准差估计。因此,需要较低的阈值参数来获得最佳的信噪比。标准的小波收缩理论预测的阈值仅取决于信号样本的数量。