Suppr超能文献

通过对多种知识来源和方法进行共识推理来解析蛋白质结构域

Protein structural domain parsing by consensus reasoning over multiple knowledge sources and methods.

作者信息

Kulikowski C A, Muchnik I, Yun H J, Dayanik A A, Zhang D, Song Y, Montelione G T

机构信息

Computer Science Department, Rutgers University, Piscataway, NJ 08903, USA.

出版信息

Stud Health Technol Inform. 2001;84(Pt 2):965-9.

Abstract

Domain parsing, or the detection of signals of protein structural domains from sequence data, is a complex and difficult problem. If carried out reliably it would be a powerful interpretive and predictive tool for genomic and proteomic studies. We report on a novel approach to domain parsing using consensus techniques based on Hidden Markov Models (HMMs) and BLAST searches built from a training set of 1471 continuous structural domains from the Dali Domain Dictionary (DDD). Validation on an independent test sample of family-matched structural domain sequences from the Scop database yields a consensus prediction performance rate of 75.5%, well above the 58% obtained by simple agreement of methods.

摘要

结构域解析,即从序列数据中检测蛋白质结构域的信号,是一个复杂且困难的问题。如果能够可靠地进行,它将成为基因组和蛋白质组研究中一个强大的解释和预测工具。我们报告了一种基于隐马尔可夫模型(HMM)和从达利结构域字典(DDD)的1471个连续结构域训练集构建的BLAST搜索的共识技术进行结构域解析的新方法。对来自scop数据库的家族匹配结构域序列的独立测试样本进行验证,得到的共识预测准确率为75.5%,远高于通过简单方法一致性获得的58%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验