Calabrese P P, Durrett R T, Aquadro C F
Department of Applied Mathematics, Cornell University, Ithaca, New York 14853, USA.
Genetics. 2001 Oct;159(2):839-52. doi: 10.1093/genetics/159.2.839.
Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions can result from a balance between polymerase slippage and point mutations. Here, we introduce an elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores point mutations. We develop a detailed mathematical theory for these models that exhibits properties of microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to analyze the successes and failures of the genetic distances (delta(mu))(2) and D(SW) when used to date four divergences: African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans, and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two examples, as does the fact that these genetic distances have large stochastic variance. However, we find that these two features are not enough to explain the problems of dating the human-chimpanzee split. One possible explanation of this phenomenon is that long microsatellites have a mutational bias that favors contractions over expansions.
最近,克鲁格利亚克、杜雷特、舒格和阿夸德罗表明,微卫星平衡分布可能源于聚合酶滑动和点突变之间的平衡。在此,我们对他们的模型进行了详细阐述,该阐述跟踪了完美重复序列的所有部分,并进行了简化,即忽略点突变。我们为这些模型开发了详细的数学理论,该理论展示了微卫星分布的特性,如等位基因长度的正偏态,这些特性与数据一致,但与逐步突变模型的预测不一致。我们利用理论结果分析了遗传距离(δ(μ))²和D(SW)在用于确定四个分歧时间时的成功与失败情况:非洲人群与非非洲人群、人类与黑猩猩、黑腹果蝇与拟果蝇,以及绵羊与牛。点突变的影响解释了后两个例子中的一些问题,这些遗传距离具有较大随机方差这一事实也解释了这些问题。然而,我们发现这两个特征不足以解释确定人类与黑猩猩分化时间的问题。对这一现象的一种可能解释是,长微卫星存在一种突变偏向,即收缩比扩张更受青睐。