Mukundan H, Kanagy N L
Vascular Physiology Group, Department of Cell Biology and Physiology, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131-5218, USA.
Am J Physiol Heart Circ Physiol. 2001 Nov;281(5):H2233-40. doi: 10.1152/ajpheart.2001.281.5.H2233.
Previously, we reported that aortic segments from rats made hypertensive with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (L-NNA) exhibit enhanced contractile sensitivity to both alpha2-adrenergic receptor (alpha2-AR) stimulation and to KCl-induced depolarization. We hypothesized that increased contractile responses to these agents was due to a change in the common effector L-type voltage-dependent calcium channel (VDCC). In aortic segments from control and L-NNA-treated rats, contraction to the alpha2-AR agonist UK-14304 stimulated Ca2+ influx but released intracellular Ca2+ only in control arteries. UK-14304-induced contraction was blocked by the VDCC antagonist nifedipine in both control and L-NNA aortas but contraction of aortas from L-NNA-treated rats was blocked by lower concentrations. Calcium imaging studies in fura 2-loaded freshly isolated aortic vascular smooth muscle cells also demonstrated UK-14304-stimulated Ca2+ influx sensitive to nifedipine only in cells from L-NNA-treated rats. We conclude that alpha2-AR contraction in the rat aorta is mediated primarily by Ca2+ influx and that L-NNA-induced hypertension increases the dependence of this contraction on VDCCs.