Catalano Vincent J., Heck Ryan A., Immoos Chad E., Öhman Anna, Hill Michael G.
Departments of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, and Occidental College, Los Angeles, California 90041.
Inorg Chem. 1998 May 4;37(9):2150-2157. doi: 10.1021/ic971027v.
The complexes Ru(trpy)(H(2)dppi)Cl (1a), Ru(trpy)(Me(2)dppi)Cl (1b), and Ru(trpy)(Cl(2)dppi)Cl (1c), where trpy is 2,2',2"-terpyridine, H(2)dppi is 3,6-bis(pyrid-2-yl)pyridazine, Me(2)dppi is 3,6-bis(6-methylpyrid-2-yl)pyridazine, and Cl(2)dppi is 3,6-bis(6-chloropyrid-2-yl)pyridazine, were synthesized and characterized by UV-visible and (1)H NMR spectroscopy. Compounds 1a and 1b were additionally characterized by X-ray crystallography. Ru(trpy)(H(2)dppi)Cl.2CH(3)CN crystallizes in the triclinic space group, P&onemacr;, with a = 8.628(1) Å, b = 14.586(2) Å, c = 14.963(2) Å, alpha = 70.857(8) degrees, beta = 77.70(1) degrees, gamma = 74.29(1) degrees, V = 1696.5(4) Å(3), and Z = 2; R(1) = 0.0739 (I > 2sigma(I)) with 5920 unique reflections. Ru(trpy)(Me(2)dppi)Cl.0.5(CH(3)CH(2))(2)O crystallizes in the triclinic space group P&onemacr;, with a = 8.820(2) Å, b = 13.580(2) Å, c = 15.260(2) Å, alpha = 88.84(1) degrees, beta = 74.25(1) degrees, gamma = 73.27(1) degrees, V = 1681.4(5) Å(3), and Z = 2; R(1) = 0.0693 (I > 2sigma(I)) with 4407 unique reflections. Reaction of 1a, 1b, and 1c with aqueous silver ion produces the corresponding aqua complexes, 2a, 2b, and 2c, which, after dissolution in acetonitrile, form the analogous acetonitrile complexes, 4a, 4b, and 4c. Ru(trpy)(H(2)dppi)(CH(3)CN)(ClO(4)).2 CH(3)CN, 4a, crystallizes in the triclinic space group P&onemacr;, with a = 12.376(1) Å, b = 12.835(2) Å, c = 13.029(2) Å, alpha = 109.252(9) degrees, beta = 102.766(8) degrees, gamma = 90.847(9) degrees, V = 1896.9(3) Å(3), and Z = 2; R(1) = 0.0397 (I > 2sigma(I)) with 4844 unique reflections. {Ru(trpy)(Cl(2)dppi)(CH(3)CN)(2)}(2).CH(3)CN, 4c, crystallizes in the triclinic space group, P&onemacr;, with a = 13.075(2) Å, b = 16.807(3) Å, c = 17.913(2) Å, alpha = 70.83(1) degrees, beta = 89.76(1) degrees, gamma = 82.44(1) degrees, V = 3682.6(1) Å(3), and Z = 2; R(1) = 0.0777 (I > 2sigma(I)) with 9459 unique reflections. The redox properties of 1a, 1b, 1c, 2a, 2b, and 2c were examined using cyclic voltammetry and spectroelectrochemistry. In acetonitrile, compounds 1a, 1b, and 1c display reversible 1e(-) waves assigned to the Ru(III)/Ru(II) couple, while, in aqueous solutions, 2a, 2b, and 2c show pH-dependent, 2e(-) waves corresponding to the formation of Ru(IV)=O complexes. Second-order rate constants, k(cat), for benzyl alcohol oxidation by the Ru(IV)=O complexes were determined electrochemically, yielding values of 22(1) M(-)(1) s(-)(1) for Ru(trpy)(H(2)dppi)(O), 9(3) M(-)(1) s(-)(1) for Ru(trpy)(Me(2)dppi)(O), and 6(4) M(-)(1) s(-)(1) for Ru(trpy)(Cl(2)dppi)(O). Interestingly, the Ru(IV)=O complex with the highest reduction potential (Ru(trpy)(Cl(2)dppi)(O)) is the slowest catalyst for benzyl alcohol oxidation. The unusual driving-force dependence of the oxidation rates exhibited by these complexes can be attributed to steric effects that result from incorporating chloro or methyl groups into the 6- and 6'-positions of the dppi ligand. These data are consistent with a mechanism in which the rate-determining step involves preassociation of the substrate with the Ru(IV)=O unit.
配合物Ru(trpy)(H₂dppi)Cl (1a)、Ru(trpy)(Me₂dppi)Cl (1b)和Ru(trpy)(Cl₂dppi)Cl (1c)(其中trpy为2,2',2''-三联吡啶,H₂dppi为3,6-双(吡啶-2-基)哒嗪,Me₂dppi为3,6-双(6-甲基吡啶-2-基)哒嗪,Cl₂dppi为3,6-双(6-氯吡啶-2-基)哒嗪)通过紫外可见光谱和¹H NMR光谱进行了合成与表征。化合物1a和1b还通过X射线晶体学进行了表征。Ru(trpy)(H₂dppi)Cl·2CH₃CN在三斜空间群P&onemacr;中结晶,a = 8.628(1) Å,b = 14.586(2) Å,c = 14.963(2) Å,α = 70.857(8)°,β = 77.70(1)°,γ = 74.29(1)°,V = 1696.5(4) ų,Z = 2;R(1) = 0.0739(I > 2σ(I)),有5920个独立反射。Ru(trpy)(Me₂dppi)Cl·0.5(CH₃CH₂)₂O在三斜空间群P&onemacr;中结晶,a = 8.820(2) Å,b = 13.580(2) Å,c = 15.260(2) Å,α = 88.84(1)°,β = 74.25(1)°,γ = 73.27(1)°,V = 1681.4(5) ų,Z = 2;R(1) = 0.0693(I > 2σ(I)),有4407个独立反射。1a、1b和1c与银离子水溶液反应生成相应的水合配合物2a、2b和2c,它们在溶解于乙腈后形成类似的乙腈配合物4a、4b和4c。Ru(trpy)(H₂dppi)(CH₃CN)(ClO₄)·2 CH₃CN,即4a,在三斜空间群P&onemacr;中结晶,a = 12.376(1) Å,b = 12.835(2) Å,c = 13.029(2) Å,α = 109.252(9)°,β = 102.766(8)°,γ = 90.847(9)°,V = 1896.9(3) ų,Z = 2;R(1) = 0.0397(I > 2σ(I)),有4844个独立反射。{Ru(trpy)(Cl₂dppi)(CH₃CN)₂}₂·CH₃CN,即4c,在三斜空间群P&onemacr;中结晶,a = 13.075(2) Å,b = 16.807(3) Å,c = 17.913(2) Å,α = 70.83(1)°,β = 89.76(1)°,γ = 82.44(1)°,V = 3682.6(1) ų,Z = 2;R(1) = 0.0777(I > 2σ(I)),有9459个独立反射。使用循环伏安法和光谱电化学研究了1a、1b、1c、2a、2b和2c的氧化还原性质。在乙腈中,化合物1a、1b和1c显示出可逆的1e⁻波,归属于Ru(III)/Ru(II)电对,而在水溶液中,2a、2b和2c显示出与pH相关的2e⁻波,对应于Ru(IV)=O配合物的形成。通过电化学方法测定了Ru(IV)=O配合物氧化苯甲醇的二级速率常数k(cat),[Ru(trpy)(H₂dppi)(O)]²⁺的值为22(1) M⁻¹ s⁻¹,[Ru(trpy)(Me₂dppi)(O)]²⁺的值为9(3) M⁻¹ s⁻¹,[Ru(trpy)(Cl₂dppi)(O)]²⁺的值为6(4) M⁻¹ s⁻¹。有趣的是,还原电位最高的Ru(IV)=O配合物([Ru(trpy)(Cl₂dppi)(O)]²⁺)是苯甲醇氧化反应中最慢的催化剂。这些配合物所表现出的氧化速率对驱动力的异常依赖性可归因于将氯或甲基引入dppi配体的6-和6'-位所产生的空间效应。这些数据与一种机制相一致,即速率决定步骤涉及底物与Ru(IV)=O单元的预缔合。