Suppr超能文献

糖胺聚糖网络几何结构可能有助于软骨在压缩状态下的各向异性水力渗透性。

Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.

作者信息

Quinn T M, Dierickx P, Grodzinsky A J

机构信息

Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.

出版信息

J Biomech. 2001 Nov;34(11):1483-90. doi: 10.1016/s0021-9290(01)00103-8.

Abstract

Resistance to fluid flow within cartilage extracellular matrix is provided primarily by a dense network of rod-like glycosaminoglycans (GAGs). If the geometrical organization of this network is random, the hydraulic permeability tensor of cartilage is expected to be isotropic. However, experimental data have suggested that hydraulic permeability may become anisotropic when the matrix is mechanically compressed, contributing to cartilage biomechanical functions such as lubrication. We hypothesized that this may be due to preferred GAG rod orientations and directionally-dependent reduction of inter-GAG spacings which reflect molecular responses to tissue deformations. To examine this hypothesis, we developed a model for effects of compression which allows the GAG rod network to deform consistently with tissue-scale deformations but while still respecting limitations imposed by molecular structure. This network deformation model was combined with a perturbation analysis of a classical analytical model for hydraulic permeability based on molecular structure. Finite element analyses were undertaken to ensure that this approach exhibited results similar to those emerging from more exact calculations. Model predictions for effects of uniaxial confined compression on the hydraulic permeability tensor were consistent with previous experimental results. Permeability decreased more rapidly in the direction perpendicular to compression than in the parallel direction, for matrix solid volume fractions associated with fluid transport in articular cartilage. GAG network deformations may therefore introduce anisotropy to the permeability (and other GAG-associated matrix properties) as physiological compression is applied, and play an important role in cartilage lubrication and other biomechanical functions.

摘要

软骨细胞外基质内对流体流动的阻力主要由密集的棒状糖胺聚糖(GAG)网络提供。如果该网络的几何组织是随机的,那么软骨的水力渗透张量预计是各向同性的。然而,实验数据表明,当基质受到机械压缩时,水力渗透率可能会变得各向异性,这有助于软骨的生物力学功能,如润滑。我们假设这可能是由于GAG棒的优先取向以及GAG间距的方向依赖性减小,这反映了分子对组织变形的反应。为了检验这一假设,我们开发了一个压缩效应模型,该模型允许GAG棒网络与组织尺度变形一致地变形,但同时仍尊重分子结构所施加的限制。这个网络变形模型与基于分子结构的经典水力渗透率分析模型的微扰分析相结合。进行了有限元分析,以确保该方法的结果与更精确计算得出的结果相似。单轴受限压缩对水力渗透张量影响的模型预测与先前的实验结果一致。对于与关节软骨中流体传输相关的基质固体体积分数,渗透率在垂直于压缩的方向上比在平行方向上下降得更快。因此,随着生理压缩的施加,GAG网络变形可能会给渗透率(以及其他与GAG相关的基质特性)引入各向异性,并在软骨润滑和其他生物力学功能中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验