Dullweber F, Stubbs M T, Musil D, Stürzebecher J, Klebe G
Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg (Lahn), Germany.
J Mol Biol. 2001 Oct 26;313(3):593-614. doi: 10.1006/jmbi.2001.5062.
The binding of a series of low molecular weight ligands towards trypsin and thrombin has been studied by isothermal titration calorimetry and protein crystallography. In a series of congeneric ligands, surprising changes of protonation states occur and are overlaid on the binding process. They result from induced pK(a) shifts depending on the local environment experienced by the ligand and protein functional groups in the complex (induced dielectric fit). They involve additional heat effects that must be corrected before any conclusion on the binding enthalpy (DeltaH) and entropy (DeltaS) can be drawn. After correction, trends in both contributions can be interpreted in structural terms with respect to the hydrogen bond inventory or residual ligand motions. For all inhibitors studied, a strong negative heat capacity change (DeltaC(p)) is detected, thus binding becomes more exothermic and entropically less favourable with increasing temperature. Due to a mutual compensation, Gibbs free energy remains virtually unchanged. The strong negative DeltaC(p) value cannot solely be explained by the removal of hydrophobic surface portions of the protein or ligand from water exposure. Additional contributions must be considered, presumably arising from modulations of the local water structure, changes in vibrational modes or other ordering parameters. For thrombin, smaller negative DeltaC(p) values are observed for ligand binding in the presence of sodium ions compared to the other alkali ions, probably due to stabilising effects on the protein or changes in the bound water structure.
通过等温滴定量热法和蛋白质晶体学研究了一系列低分子量配体与胰蛋白酶和凝血酶的结合情况。在一系列同系配体中,质子化状态发生了惊人的变化,并叠加在结合过程中。它们是由诱导的pK(a)位移引起的,这取决于复合物中配体和蛋白质官能团所经历的局部环境(诱导介电拟合)。它们涉及额外的热效应,在得出关于结合焓(ΔH)和熵(ΔS)的任何结论之前,必须对这些效应进行校正。校正后,这两种贡献的趋势可以根据氢键存量或配体残余运动从结构角度进行解释。对于所有研究的抑制剂,均检测到强烈的负热容变化(ΔC(p)),因此随着温度升高,结合变得更加放热且熵变不利。由于相互补偿,吉布斯自由能实际上保持不变。强烈的负ΔC(p)值不能仅通过蛋白质或配体的疏水表面部分从水暴露中去除来解释。必须考虑其他贡献,可能源于局部水结构的调制、振动模式的变化或其他有序参数。对于凝血酶,与其他碱金属离子相比,在钠离子存在下配体结合时观察到较小的负ΔC(p)值,这可能是由于对蛋白质的稳定作用或结合水结构的变化。