Taniguchi M, Ra D, Mo G, Balasubramanian T, Lindsey J S
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
J Org Chem. 2001 Nov 2;66(22):7342-54. doi: 10.1021/jo0104835.
Chlorin building blocks incorporating a geminal dimethyl group in the reduced ring and synthetic handles in specific patterns at the perimeter of the macrocycle are expected to have utility in biomimetic and materials chemistry. A prior route employed condensation of a dihydrodipyrrin (Western half) and a bromodipyrromethane-monocarbinol (Eastern half), followed by oxidative cyclization of the putative dihydrobilene-a to form the meso-substituted zinc chlorin in yields of approximately 10%. The limited stability of the dihydrodipyrrin precluded study of the chlorin-forming process. We now have refined this methodology. A tetrahydrodipyrrin Western half (2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin) has been synthesized and found to be quite stable. The condensation of the Western half and an Eastern half (100 mM each) proceeded smoothly in CH(3)CN containing 100 mM TFA at room temperature for 30 min. The resulting linear tetrapyrrole, a 2,3,4,5-tetrahydrobilene-a, also is quite stable, enabling study of the conversion to chlorin. Refined conditions for the oxidative cyclization were found to include the following: the tetrahydrobilene-a (10 mM), AgTf (3-5 molar equiv), Zn(OAc)(2) (15 molar equiv), and 2,2,6,6-tetramethylpiperidine (15 molar equiv) in CH(3)CN at reflux exposed to air for 4-6 h, affording the zinc chlorin. The chlorin-forming process could be implemented in either a two-flask process or a one-flask process. The two-flask process was applied to form six zinc chlorins bearing substituents such as pentafluorophenyl, 3,5-di-tert-butylphenyl, TMS-ethyl benzoate, iodophenyl, or ethynylphenyl (deprotection of the TMS-ethynyl group occurred during the oxidative cyclization process). The stepwise yields (isolated) for the condensation and oxidative cyclization processes forming the tetrahydrobilene and zinc chlorin were 32-72% and 27-62%, respectively, giving overall yields of zinc chlorin from the Eastern and Western halves of 12-45%. Taken together, the refinements introduced enable 100-mg quantities of chlorin building blocks to be prepared in a facile and rational manner.
在还原环中含有偕二甲基基团且在大环周边具有特定模式合成手柄的二氢卟吩结构单元有望在仿生化学和材料化学中发挥作用。之前的路线采用二氢二吡咯(西半部分)与溴代二吡咯甲烷 - 单甲醇(东半部分)缩合,随后将假定的二氢卟吩 - a进行氧化环化以形成中位取代的锌二氢卟吩,产率约为10%。二氢二吡咯的稳定性有限,妨碍了对二氢卟吩形成过程的研究。我们现在改进了这种方法。已经合成了四氢二吡咯西半部分(2,3,4,5 - 四氢 - 1,3,3 - 三甲基二吡咯),发现其相当稳定。西半部分和东半部分(各100 mM)在含有100 mM三氟乙酸的乙腈中于室温下顺利缩合30分钟。所得的线性四吡咯,即2,3,4,5 - 四氢卟吩 - a,也相当稳定,能够对其向二氢卟吩的转化进行研究。发现氧化环化的优化条件包括:在回流的乙腈中,将四氢卟吩 - a(10 mM)、三氟甲磺酸银(3 - 5摩尔当量)、醋酸锌(15摩尔当量)和2,2,6,6 - 四甲基哌啶(15摩尔当量)暴露于空气中4 - 6小时,得到锌二氢卟吩。二氢卟吩形成过程可以采用双瓶法或单瓶法实施。双瓶法用于形成六种带有五氟苯基、3,5 - 二叔丁基苯基、三甲基硅基 - 苯甲酸乙酯、碘苯基或乙炔基苯基等取代基的锌二氢卟吩(在氧化环化过程中三甲基硅基乙炔基发生脱保护)。形成四氢卟吩和锌二氢卟吩的缩合和氧化环化过程的分步产率(分离产率)分别为32 - 72%和27 - 62%,从东半部分和西半部分得到的锌二氢卟吩的总产率为12 - 45%。综上所述,所引入的改进使得能够以简便且合理的方式制备100毫克量的二氢卟吩结构单元。