Suppr超能文献

Interaction of protamine with alpha- and beta-adrenoceptor stimulations in rat myocardium.

作者信息

David J S, Vivien B, Lecarpentier Y, Coriat P, Riou B

机构信息

Department of Anesthesiology, Centre Hospitalier Univeristaire Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie, France.

出版信息

Anesthesiology. 2001 Nov;95(5):1226-33. doi: 10.1097/00000542-200111000-00029.

Abstract

BACKGROUND

Protamine alters the inotropic responses to beta-adrenoceptor stimulation, but its mechanism of action is not well-understood. Moreover, its interaction with alpha-adrenoceptor stimulation and the lusitropic (relaxation) response to beta-adrenoceptor stimulation remain unknown.

METHODS

The effects of protamine (10 or 100 microg/ml) on the responses induced by phenylephrine and isoproterenol were studied in rat left ventricular papillary muscles. Inotropic and lusitropic effects were studied under low and high loads. The authors also studied the interaction of protamine with forskolin (50 microm) and dibutyryl 3',5'-cAMP (0.5 mm). Data are mean percentage of baseline active force +/- SD.

RESULTS

In control groups, phenylephrine (135 +/- 17%, P < 0.05) and isoproterenol (185 +/- 44%, P < 0.05) induced a positive inotropic effect. Isoproterenol induced positive lusitropic effects under low and high loads. Protamine abolished the inotropic responses to alpha- (102 +/- 23%, not significant) and beta-adrenoceptor stimulations (99 +/- 17%, not significant) but did not modify the lusitropic responses to isoproterenol. Protamine abolished the inotropic responses to forskolin (89 +/- 6 vs. 154 +/- 20%, P < 0.05) and markedly decreased that of dibutyryl 3',5'-cAMP (132 +/- 31 vs. 167 +/- 30%, P < 0.05) but did not modify their lusitropic responses.

CONCLUSIONS

Protamine abolished the inotropic responses to alpha- and beta-adrenoceptor stimulations but preserved the lusitropic responses to beta-adrenoceptor stimulation. Although protamine may act at several sites on the adrenoceptor stimulation cascade, one of its main sites of action is situated downstream from cAMP-mediated phosphorylation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验