Tertov V V, Kaplun V V, Sobenin I A, Boytsova E Y, Bovin N V, Orekhov A N
Institute of Experimental Cardiology, Cardiology Research Center, Institute for Atherosclerosis Research Ltd, 121552, Moscow, Russia.
Atherosclerosis. 2001 Nov;159(1):103-15. doi: 10.1016/s0021-9150(01)00498-1.
In earlier studies we have found that incubation of low density lipoprotein (LDL) with autologous blood plasma-derived serum leads to a loss of sialic acid from lipoprotein particles. In this study we demonstrated that sialic acid removed from LDL was transferred to glycoconjugates of lipoproteins, glycoproteins and sphingolipids of human serum. This showed that human serum contained the trans-sialidase activity. Gel-filtration chromatography of human blood serum demonstrated the presence of trans-sialidase activity in lipoprotein subfractions as well as in lipoprotein-deficient serum. Trans-sialidase (about 65 kDa) was isolated from lipoprotein-deficient serum using affinity chromatography carried out with Neu5Acalpha2-8Neu5Ac-sepharose FF-6. Optimal pH values for the trans-sialidase were 3.0, 5.0 and 7.0. Calcium and magnesium ions stimulated the enzyme activity at millimolar concentrations. Isolated enzyme can remove sialic acid from LDL, IDL, VLDL, and HDL particles (in decreasing rate order). Serum trans-sialidase transferred sialic acid from glycoconjugates of plasma proteins (fetuin, transferrin) and gangliosides (GM3, GD3, GM1, GD1a, GD1b). Sialylated glycoconjugates of human blood erythrocytes also served as substrate for serum trans-sialidase. We have found that sialic acid can also be removed from N- and O-linked glycans, sialylated Le(x) and Le(a), oligosialic acids, and sphingolipid carbohydrate chains. The rate of sialic acid release decreased in the following order: alpha2,6>alpha2,3>>alpha2,8. Transferred molecule of sialic acid can form alpha2,6, alpha2,3 and to a lesser degree alpha2,8 linkage with galactose, N-acetyl-galactosamine or sialic acid of acceptors. The glycoconjugates of erythrocytes, lipoprotein particles, plasma proteins, neutral sphingolipids and gangliosides may serve as acceptors of transferred sialic acid. Trans-sialidase-treated native LDL becomes desialylated and then can induce cholesteryl ester accumulation in human aortic intimal smooth muscle cells. Thus, trans-sialidase may be involved in the early stages of atherogenesis characterized by foam cell formation.
在早期研究中,我们发现将低密度脂蛋白(LDL)与源自自体血浆的血清一起孵育会导致脂蛋白颗粒中的唾液酸丢失。在本研究中,我们证明从LDL中去除的唾液酸被转移到了人血清中脂蛋白、糖蛋白和鞘脂的糖缀合物上。这表明人血清中存在转唾液酸酶活性。人血清的凝胶过滤色谱显示,脂蛋白亚组分以及脂蛋白缺乏血清中均存在转唾液酸酶活性。使用Neu5Acalpha2 - 8Neu5Ac - sepharose FF - 6进行亲和色谱,从脂蛋白缺乏血清中分离出转唾液酸酶(约65 kDa)。转唾液酸酶的最佳pH值为3.0、5.0和7.0。钙和镁离子在毫摩尔浓度下刺激该酶的活性。分离出的酶可以从LDL、中间密度脂蛋白(IDL)、极低密度脂蛋白(VLDL)和高密度脂蛋白(HDL)颗粒中去除唾液酸(去除速率依次降低)。血清转唾液酸酶将唾液酸从血浆蛋白(胎球蛋白、转铁蛋白)和神经节苷脂(GM3、GD3、GM1、GD1a、GD1b)的糖缀合物上转移。人血红细胞的唾液酸化糖缀合物也可作为血清转唾液酸酶的底物。我们发现唾液酸也可以从N - 连接和O - 连接聚糖、唾液酸化的Le(x)和Le(a)、寡唾液酸以及鞘脂碳水化合物链中去除。唾液酸释放速率按以下顺序降低:α2,6>α2,3>>α2,8。转移的唾液酸分子可以与受体的半乳糖、N - 乙酰半乳糖胺或唾液酸形成α2,6、α2,3以及程度较小的α2,8连接。红细胞、脂蛋白颗粒、血浆蛋白、中性鞘脂和神经节苷脂的糖缀合物可作为转移唾液酸的受体。经转唾液酸酶处理的天然LDL会去唾液酸化,然后可诱导人主动脉内膜平滑肌细胞中胆固醇酯的积累。因此,转唾液酸酶可能参与了以泡沫细胞形成为特征的动脉粥样硬化早期阶段。