Jan Angerman H, Shakhnovich E
Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 1):041802. doi: 10.1103/PhysRevE.64.041802. Epub 2001 Sep 24.
We study solutions of statistically neutral polyampholyte chains containing a large fraction of neutral monomers. It is known that such solutions phase separate at very low concentrations, even if the quality of the solvent with respect to the neutral monomers is good. The precipitate is semidilute if the chains are weakly charged. This paper considers straight theta solvents and good solvents, and we calculate the dynamic charge density correlation function g(k,t) in the precipitate, using the quadratic approximation to the Martin-Siggia-Rose generating functional. It is convenient to express the results in terms of dimensionless space and time variables. Let xi be the blob size, and let tau be the characteristic time scale at the blob level. Define the dimensionless wave vector q=xik, and the dimensionless time s=t/tau. In the regime q<1, corresponding to length scales larger than the blob size, and 1<s<q(-4), corresponding to time scales in between the blob relaxation time and the relaxation time at scale q(-1), we find that the charge density fluctuations relax according to the power law g(q,s) approximately q(2)s(-1/2). This relaxation is qualitatively different from that of a neutral semidilute polymer solution. We expect our results to be valid for wave vectors q>0.1, where entanglements are unimportant.
我们研究了含有大量中性单体的统计中性聚两性电解质链的溶液。已知即使溶剂对中性单体的性质良好,此类溶液在极低浓度下也会发生相分离。如果链的电荷较弱,沉淀物就是半稀溶液。本文考虑了理想θ溶剂和良溶剂,我们使用对马丁 - 西吉亚 - 罗斯生成泛函的二次近似来计算沉淀物中的动态电荷密度关联函数g(k,t)。用无量纲的空间和时间变量来表示结果会很方便。设xi为链段大小,设tau为链段层面的特征时间尺度。定义无量纲波矢q = xik,无量纲时间s = t/tau。在q < 1的区域,对应于大于链段大小的长度尺度,以及1 < s < q^(-4)的区域,对应于介于链段弛豫时间和尺度q^(-1)处的弛豫时间之间的时间尺度,我们发现电荷密度涨落按照幂律g(q,s) ≈ q^2 s^(-1/2)弛豫。这种弛豫与中性半稀聚合物溶液的弛豫在性质上不同。我们预计我们的结果对于q > 0.1的波矢是有效的,在该范围内缠结并不重要。