Islamov R S
Institute of Laser and Information Technologies, RAS, 140700 Shatura, Moscow Region, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):046405. doi: 10.1103/PhysRevE.64.046405. Epub 2001 Sep 25.
A physical self-consistent model is developed to explain single spots or complex current structures at the anode of elevated-pressure parallel-plate dc discharges. The model is based on a fluid description of electron and ion transport coupled with Poisson's equation and involves a pair of coupled reaction-diffusion equations of an activator-inhibitor-type. This system of one-dimensional equations containing no phenomenological (adjustable) parameters allows one to find the current-density (activator) and anode potential drop (inhibitor) distributions on the anode surface. In a certain range of supply voltage, an anode glow stratification, resulting in the formation of separate glowing regions, takes place. However, the growth of perturbations and formation of a spatially periodic current pattern are complicated by competition between the current stripes, leading to suppressing of the neighboring current stripes. The bifurcation behavior of the model with respect to the characteristic electron energy, recombination coefficient, and discharge gap has been analyzed. The properties of a single anode current structure, including the normal current density effect, have been investigated. The application of these results to available findings in experiments and two-dimensional numerical simulations is discussed.