Suppr超能文献

来自人工神经网络模型的氨基酸替换矩阵。

Amino acid substitution matrices from an artificial neural network model.

作者信息

Lin K, May A C, Taylor W R

机构信息

Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, United Kingdom.

出版信息

J Comput Biol. 2001;8(5):471-81. doi: 10.1089/106652701753216495.

Abstract

An amino acid substitution matrix specifies probabilities of substitutions for each pair of the 20 amino acids. Log-odds scores transformed from the values in substitution matrices are widely used to construct protein sequence alignments. Any given substitution matrix is suited to matching sequences diverged by a specific evolutionary distance. However, for a given set of sequences, it is not always clear what matrix should be used. We used an artificial neural network model to predict probabilities of amino acid substitutions with alignment samples of different evolutionary distances. From this internal description, substitution matrices suitable for detecting relationships at any chosen evolutionary distance can be instantly generated. By using the additional information of evolutionary distances, the average cross entropy error of our neural network model is lower than that of a series of BLOSUM and PET matrices over all testing sets. Our model is more accurate on the prediction of amino acid substitution probabilities.

摘要

氨基酸替换矩阵规定了20种氨基酸中每一对之间的替换概率。从替换矩阵中的值转换而来的对数似然得分被广泛用于构建蛋白质序列比对。任何给定的替换矩阵都适用于匹配因特定进化距离而分化的序列。然而,对于给定的一组序列,并不总是清楚应该使用什么矩阵。我们使用人工神经网络模型,通过不同进化距离的比对样本预测氨基酸替换的概率。根据这一内部描述,可以立即生成适合检测任何选定进化距离下关系的替换矩阵。通过使用进化距离的附加信息,我们神经网络模型的平均交叉熵误差在所有测试集上都低于一系列BLOSUM和PET矩阵。我们的模型在预测氨基酸替换概率方面更准确。

相似文献

1
Amino acid substitution matrices from an artificial neural network model.
J Comput Biol. 2001;8(5):471-81. doi: 10.1089/106652701753216495.
2
A transition probability model for amino acid substitutions from blocks.
J Comput Biol. 2003;10(6):997-1010. doi: 10.1089/106652703322756195.
3
The ranging of amino acids substitution matrices of various types in accordance with the alignment accuracy criterion.
BMC Bioinformatics. 2020 Sep 14;21(Suppl 11):294. doi: 10.1186/s12859-020-03616-0.
4
Improved pairwise alignments of proteins in the Twilight Zone using local structure predictions.
Bioinformatics. 2006 Feb 15;22(4):413-22. doi: 10.1093/bioinformatics/bti828. Epub 2005 Dec 13.
5
Empirical models for substitution in ribosomal RNA.
Mol Biol Evol. 2004 Mar;21(3):419-27. doi: 10.1093/molbev/msh029. Epub 2003 Dec 5.
6
Empirical codon substitution matrix.
BMC Bioinformatics. 2005 Jun 1;6:134. doi: 10.1186/1471-2105-6-134.
7
The construction of amino acid substitution matrices for the comparison of proteins with non-standard compositions.
Bioinformatics. 2005 Apr 1;21(7):902-11. doi: 10.1093/bioinformatics/bti070. Epub 2004 Oct 27.
8
Sequence alignment with an appropriate substitution matrix.
J Comput Biol. 2008 Mar;15(2):129-38. doi: 10.1089/cmb.2007.0155.
9
A protein alignment scoring system sensitive at all evolutionary distances.
J Mol Evol. 1993 Mar;36(3):290-300. doi: 10.1007/BF00160485.

引用本文的文献

1
A collection of amino acid replacement matrices derived from clusters of orthologs.
J Mol Evol. 2005 Nov;61(5):659-65. doi: 10.1007/s00239-005-0060-0. Epub 2005 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验