Suppr超能文献

未成熟皮层网络中的同步振荡活动由GABA能前板神经元驱动。

Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.

作者信息

Voigt T, Opitz T, de Lima A D

机构信息

Otto-von-Guericke Universität, Medizinische Fakultät, Institut für Physiologie, 39120 Magdeburg, Germany.

出版信息

J Neurosci. 2001 Nov 15;21(22):8895-905. doi: 10.1523/JNEUROSCI.21-22-08895.2001.

Abstract

Neurons dissociated from embryonic cerebral rat cortex form a differentiated network of synaptic connections and develop synchronous oscillatory network activity with the beginning of the second week in culture. During an initial phase lasting 3-4 d, synchronous calcium transients can be blocked completely by either CNQX or bicuculline, showing that both glutamatergic and GABAergic neurons are required for the generation of this form of activity. By manipulating dissociation and growth conditions, cultures containing different populations of GABAergic neurons were obtained. These cultures revealed that a distinct population of large GABAergic neurons is a key element in the generation of synchronous oscillatory network activity. A minimal number of two large GABAergic neurons per square millimeter are required for the occurrence of synchronous activity. Changes in the density of all other types of GABAergic or non-GABAergic neurons has no influence on the synchronous activity. Electron microscopic analysis shows that the large GABAergic neurons form an interconnected network. Exceptionally high somatodendritic innervation and extended axonal arborization enable these neurons to collect electric network activity and to distribute it effectively throughout the neuronal network. Additional experiments indicated that most neurons developing in culture to large GABAergic neurons are derived from the primordial plexiform layer and reside in the subplate at the time of birth. We suggest that they function as an integrating element that synchronizes neuronal activity during early cortical development by collecting incoming extrinsic and intrinsic signals and distributing them effectively throughout the developing cortical plate.

摘要

从胚胎大鼠大脑皮层解离的神经元在培养的第二周开始时形成一个分化的突触连接网络,并发展出同步振荡网络活动。在持续3 - 4天的初始阶段,CNQX或荷包牡丹碱均可完全阻断同步钙瞬变,这表明谷氨酸能神经元和γ-氨基丁酸能神经元对于这种活动形式的产生都是必需的。通过控制解离和生长条件,获得了含有不同γ-氨基丁酸能神经元群体的培养物。这些培养物显示,一群独特的大型γ-氨基丁酸能神经元是同步振荡网络活动产生的关键要素。每平方毫米至少需要两个大型γ-氨基丁酸能神经元才能出现同步活动。所有其他类型的γ-氨基丁酸能或非γ-氨基丁酸能神经元密度的变化对同步活动没有影响。电子显微镜分析表明,大型γ-氨基丁酸能神经元形成一个相互连接的网络。极高的体树突支配和广泛的轴突分支使这些神经元能够收集电网络活动并有效地将其分布到整个神经元网络中。额外的实验表明,培养中发育为大型γ-氨基丁酸能神经元的大多数神经元源自原始丛状层,出生时位于板下层。我们认为,它们作为一个整合元件,通过收集传入的外在和内在信号并有效地将其分布到发育中的皮质板中,在早期皮质发育过程中使神经元活动同步。

相似文献

1
Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
J Neurosci. 2001 Nov 15;21(22):8895-905. doi: 10.1523/JNEUROSCI.21-22-08895.2001.
2
Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
Eur J Neurosci. 2004 Jun;19(11):2931-43. doi: 10.1111/j.0953-816X.2004.03403.x.
4
Regulation of early spontaneous network activity and GABAergic neurons development by thyroid hormone.
Neuroscience. 2010 Jun 30;168(2):573-89. doi: 10.1016/j.neuroscience.2010.03.039. Epub 2010 Mar 23.
5
Spontaneous GABA(A)-dependent synchronous periodic activity in adult rat ventral hippocampal slices.
Neurosci Lett. 2002 Feb 8;319(1):17-20. doi: 10.1016/s0304-3940(01)02505-8.
6
The generation of rhythmic activity in dissociated cultures of rat spinal cord.
Eur J Neurosci. 2001 Jul;14(2):191-202. doi: 10.1046/j.0953-816x.2001.01636.x.
7
Periodic oscillatory activity in parahippocampal slices maintained in vitro.
Neuroscience. 2005;130(4):1041-53. doi: 10.1016/j.neuroscience.2004.10.012.
8
Developmental changes of GABAergic synapses formed between primary cultured cortical neurons.
Brain Res Dev Brain Res. 2004 Sep 17;152(2):99-108. doi: 10.1016/j.devbrainres.2004.05.013.

引用本文的文献

1
Spatiotemporal analysis of 3D human iPSC-derived neural networks using a 3D multi-electrode array.
Front Cell Neurosci. 2023 Nov 13;17:1287089. doi: 10.3389/fncel.2023.1287089. eCollection 2023.
3
Changing subplate circuits: Early activity dependent circuit plasticity.
Front Cell Neurosci. 2023 Jan 11;16:1067365. doi: 10.3389/fncel.2022.1067365. eCollection 2022.
5
Spontaneous Activity Predicts Survival of Developing Cortical Neurons.
Front Cell Dev Biol. 2022 Aug 10;10:937761. doi: 10.3389/fcell.2022.937761. eCollection 2022.
6
The Structural E/I Balance Constrains the Early Development of Cortical Network Activity.
Front Cell Neurosci. 2021 Jul 19;15:687306. doi: 10.3389/fncel.2021.687306. eCollection 2021.
7
Bumetanide Therapeutic Effect in Children and Adolescents With Autism Spectrum Disorder: A Review Study.
Basic Clin Neurosci. 2019 Sep-Oct;10(5):433-441. doi: 10.32598/bcn.9.10.380. Epub 2019 Sep 1.
8
Self-Organized Synchronous Calcium Transients in a Cultured Human Neural Network Derived from Cerebral Organoids.
Stem Cell Reports. 2019 Sep 10;13(3):458-473. doi: 10.1016/j.stemcr.2019.05.029. Epub 2019 Jun 27.

本文引用的文献

1
PATTERN OF CELL MIGRATION DURING CORTICAL HISTOGENESIS.
Nature. 1964 Aug 8;203:591-3. doi: 10.1038/203591b0.
3
Large-scale oscillatory calcium waves in the immature cortex.
Nat Neurosci. 2000 May;3(5):452-9. doi: 10.1038/74823.
4
Embryonic and early fetal development of the human neocortex.
J Neurosci. 2000 Mar 1;20(5):1858-68. doi: 10.1523/JNEUROSCI.20-05-01858.2000.
5
The origin and migration of cortical neurones: new vistas.
Trends Neurosci. 2000 Mar;23(3):126-31. doi: 10.1016/s0166-2236(00)01553-8.
6
Traveling slow waves of neural activity: a novel form of network activity in developing neocortex.
J Neurosci. 2000 Jan 15;20(2):RC54. doi: 10.1523/JNEUROSCI.20-02-j0002.2000.
8
10
Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression.
Cereb Cortex. 1999 Sep;9(6):601-10. doi: 10.1093/cercor/9.6.601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验