Suppr超能文献

用于处理视觉方向对视觉感知眼水平(VPEL)影响的神经模型。

Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL).

作者信息

Matin L, Li W

机构信息

Clarence H. Graham Memorial Laboratory of Visual Science, Department of Psychology, Columbia University, New York, NY 1027, USA.

出版信息

Vision Res. 2001 Oct;41(22):2845-72. doi: 10.1016/s0042-6989(01)00150-x.

Abstract

An individual line or a combination of lines viewed in darkness has a large influence on the elevation to which an observer sets a target so that it is perceived to lie at eye level (VPEL). These influences are systematically related to the orientation of pitched-from-vertical lines on pitched plane(s) and to the lengths of the lines, as well as to the orientations of lines of 'equivalent pitch' that lie on frontoparallel planes. A three-stage model processes the visual influence: The first stage parallel processes the orientations of the lines utilizing 2 classes of orientation-sensitive neural units in each hemisphere, with the two classes sensitive to opposing ranges of orientations; the signal delivered by each class is of opposite sign in the two hemispheres. The second stage generates the total visual influence from the parallel combination of inputs delivered by the 4 groups of the first stage, and a third stage combines the total visual influence from the second stage with signals from the body-referenced mechanism that contains information about the position and orientation of the eyes, head, and body. The circuit equation describing the combined influence of n separate inputs from stage 1 on the output of the stage 2 integrating neuron is derived for n stimulus lines which possess any combination of orientations and lengths; Each of the n lines is assumed to stimulate one of the groups of orientation-sensitive units in visual cortex (stage 1) whose signals converge on to a dendrite of the integrating neuron (stage 2), and to produce changes in postsynaptic membrane conductance (g(i)) and potential (V(i)) there. The net current from the n dendrites results in a voltage change (V(A)) at the initial segment of the axon of the integrating neuron. Nerve impulse frequency proportional to this voltage change signals the total visual influence on perceived elevation of the visual field. The circuit equation corresponding to the total visual influence for n equal length inducing lines is V(A)= sum V(i)/[n+(g(A)/g(S))], where the potential change due to line i, V(i), is proportional to line orientation, g(A) is the conductance at the axon's summing point, and g(S)=g(i) for each i for the equal length case; the net conductance change due to a line is proportional to the line's length. The circuit equation is interpreted as a basis for quantitative predictions from the model that can be compared to psychophysical measurements of the elevation of VPEL. The interpretation provides the predicted relation for the visual influence on VPEL, V, by n inducing lines each with length l: thus, V=a+[k(i) sum theta(i)/n+(k(2)/l)], where theta(i) is the orientation of line i, a is the effect of the body-referenced mechanism, and k(1) and k(2) are constants. The model's output is fitted to the results of five sets of experiments in which the elevation of VPEL measured with a small target in the median plane is systematically influenced by distantly located 1-line or 2-line inducing stimuli varying in orientation and length and viewed in otherwise total darkness with gaze restricted to the median plane; each line is located at either 25 degrees eccentricity to the left or right of the median plane. The model predicts the negatively accelerated growth of VPEL with line length for each orientation and the change of slope constant of the linear combination rule among lines from 1.00 (linear summation; short lines) to 0.61 (near-averaging; long lines). Fits to the data are obtained over a range of orientations from -30 degrees to +30 degrees of pitch for 1-line visual fields from lengths of 3 degrees to 64 degrees, for parallel 2-line visual fields over the same range of lengths and orientations, for short and long 2-line combinations in which each of the two members may have any orientation (parallel or nonparallel pairs), and for the well-illuminated and fully structured pitchroom. In addition, similar experiments with 2-line stimuli of equivalent pitch in the frontoparallel plane were also fitted to the model. The model accounts for more than 98% of the variance of the results in each case.

摘要

在黑暗中观察到的单条线或多条线的组合,对观察者设定目标的高度有很大影响,使得该目标被感知为位于眼平高度(VPEL)。这些影响与倾斜平面上倾斜于垂直方向的线的方向、线的长度以及位于额状平行平面上的“等效倾斜”线的方向系统相关。一个三阶段模型处理视觉影响:第一阶段利用每个半球中的两类方向敏感神经单元并行处理线的方向,这两类单元对相反的方向范围敏感;每类单元传递的信号在两个半球中符号相反。第二阶段从第一阶段的4组输入的并行组合中生成总的视觉影响,第三阶段将第二阶段的总视觉影响与来自身体参考机制的信号相结合,该机制包含有关眼睛、头部和身体的位置和方向的信息。针对具有任意方向和长度组合的n条刺激线,推导了描述第一阶段n个单独输入对第二阶段积分神经元输出的组合影响的电路方程;假设n条线中的每条线刺激视觉皮层(第一阶段)中的一组方向敏感单元,其信号汇聚到积分神经元(第二阶段)的一个树突上,并在那里产生突触后膜电导(g(i))和电位(V(i))的变化。来自n个树突的净电流在积分神经元轴突的起始段导致电压变化(V(A))。与该电压变化成比例的神经冲动频率表示对视野感知高度的总视觉影响。对于n条等长诱导线的总视觉影响对应的电路方程为V(A)= sum V(i)/[n+(g(A)/g(S))],其中由于线i引起的电位变化V(i)与线的方向成比例,g(A)是轴突求和点处的电导,对于等长情况,每条线的g(S)=g(i);由于一条线引起的净电导变化与线的长度成比例。该电路方程被解释为该模型进行定量预测的基础,这些预测可与VPEL高度的心理物理学测量结果进行比较。该解释提供了n条长度均为l的诱导线对VPEL视觉影响V的预测关系:因此,V=a+[k(i) sum theta(i)/n+(k(2)/l)],其中theta(i)是线i的方向,a是身体参考机制的影响,k(1)和k(2)是常数。该模型的输出与五组实验结果相拟合,在这些实验中,用位于正中平面的小目标测量的VPEL高度受到远处1线或2线诱导刺激的系统影响,这些刺激的方向和长度各不相同,且在其他方面完全黑暗的环境中观察,注视限制在正中平面;每条线位于正中平面左侧或右侧25度的偏心位置。该模型预测了每个方向上VPEL随线长度的负加速增长,以及线之间线性组合规则的斜率常数从1.00(线性求和;短线)到0.61(接近平均;长线)的变化。对于长度从3度到64度的1线视野,在从 -30度到 +30度的倾斜范围内的各种方向上,对于相同长度和方向范围内的平行2线视野,对于两条线中的每条线可能具有任意方向(平行或非平行对)的短2线和长2线组合,以及对于照明良好且结构完整的倾斜房间,均获得了与数据的拟合。此外,在额状平行平面中具有等效倾斜度的2线刺激的类似实验结果也与该模型相拟合。在每种情况下,该模型解释了结果方差的98%以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验