Suppr超能文献

相似文献

1
Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14044-9. doi: 10.1073/pnas.241396898. Epub 2001 Nov 13.
2
Molecular mechanisms characterizing cone photoresponses.
Photochem Photobiol. 2007 Jan-Feb;83(1):19-26. doi: 10.1562/2006-02-28-IR-823.
3
Rod and cone photoreceptors: molecular basis of the difference in their physiology.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Aug;150(4):369-77. doi: 10.1016/j.cbpa.2008.04.600. Epub 2008 Apr 26.
4
Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
Vision Res. 2008 Jan;48(2):264-72. doi: 10.1016/j.visres.2007.11.005. Epub 2007 Dec 31.
5
Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
J Biol Chem. 2015 Apr 10;290(15):9399-411. doi: 10.1074/jbc.M114.634543. Epub 2015 Feb 20.
6
Low activation and fast inactivation of transducin in carp cones.
J Biol Chem. 2012 Nov 30;287(49):41186-94. doi: 10.1074/jbc.M112.403717. Epub 2012 Oct 8.
7
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11.
8
Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9329-34. doi: 10.1073/pnas.0501875102. Epub 2005 Jun 15.
9
Late stages of visual pigment photolysis in situ: cones vs. rods.
Vision Res. 2006 Jul;46(14):2287-97. doi: 10.1016/j.visres.2005.12.017. Epub 2006 Feb 13.

引用本文的文献

1
Characterization of zebrafish rod and cone photoresponses.
Sci Rep. 2025 Apr 18;15(1):13413. doi: 10.1038/s41598-025-96058-8.
2
Characterization of zebrafish rod and cone photoresponses.
Res Sq. 2025 Mar 12:rs.3.rs-5984163. doi: 10.21203/rs.3.rs-5984163/v1.
3
Mathematical analysis of phototransduction reaction parameters in rods and cones.
Sci Rep. 2022 Nov 14;12(1):19529. doi: 10.1038/s41598-022-23069-0.
4
Phototransduction in retinal cones: Analysis of parameter importance.
PLoS One. 2021 Oct 28;16(10):e0258721. doi: 10.1371/journal.pone.0258721. eCollection 2021.
5
Chimeric human opsins as optogenetic light sensitisers.
J Exp Biol. 2021 Jul 15;224(14). doi: 10.1242/jeb.240580. Epub 2021 Jul 14.
7
Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes.
Curr Biol. 2020 Dec 21;30(24):4921-4931.e5. doi: 10.1016/j.cub.2020.09.062. Epub 2020 Oct 15.
8
Phosphodiesterase 6H, cone-specific inhibitor: Basis Sequence: Mouse.
AFCS Nat Mol Pages. 2011;2011. doi: 10.1038/mp.a001758.01. Epub 2011 Jun 3.
9
Multi-scale, numerical modeling of spatio-temporal signaling in cone phototransduction.
PLoS One. 2019 Jul 25;14(7):e0219848. doi: 10.1371/journal.pone.0219848. eCollection 2019.

本文引用的文献

1
Adaptation in vertebrate photoreceptors.
Physiol Rev. 2001 Jan;81(1):117-151. doi: 10.1152/physrev.2001.81.1.117.
3
Origin and functional impact of dark noise in retinal cones.
Neuron. 2000 Apr;26(1):181-6. doi: 10.1016/s0896-6273(00)81148-4.
4
Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase.
J Biol Chem. 2000 Feb 4;275(5):3313-9. doi: 10.1074/jbc.275.5.3313.
5
Visual pigment: G-protein-coupled receptor for light signals.
Cell Mol Life Sci. 1998 Dec;54(12):1299-315. doi: 10.1007/s000180050256.
6
Selective activation of G-protein subtypes by vertebrate and invertebrate rhodopsins.
FEBS Lett. 1998 Nov 13;439(1-2):110-4. doi: 10.1016/s0014-5793(98)01340-4.
7
Activation of transducin by a Xenopus short wavelength visual pigment.
J Biol Chem. 1997 Jan 10;272(2):1095-100. doi: 10.1074/jbc.272.2.1095.
8
Photoreceptor protein s26, a cone homologue of S-modulin in frog retina.
J Biol Chem. 1996 Aug 30;271(35):21359-64. doi: 10.1074/jbc.271.35.21359.
9
How photons start vision.
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):560-5. doi: 10.1073/pnas.93.2.560.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验