Wang H, Guan J, Wang H, Perrault A R, Wang Y, Iliakis G
Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
Cancer Res. 2001 Dec 1;61(23):8554-63.
Replication protein A (RPA, also known as human single-stranded DNA-binding protein) is a trimeric, multifunctional protein complex involved in DNA replication, DNA repair, and recombination. Phosphorylation of the RPA2 subunit is observed after exposure of cells to ionizing radiation (IR) and other DNA-damaging agents, which implicates the modified protein in the regulation of DNA replication after DNA damage or in DNA repair. Although ataxia telangiectasia-mutated (ATM) and DNA-dependent protein kinase (DNA-PK) phosphorylate RPA2 in vitro, their role in vivo remains uncertain, and contradictory results have been reported. Here we show that RPA2 phosphorylation is delayed in cells deficient in one of these kinases and completely abolished in wild-type, ATM, or DNA-PK-deficient cells after treatment with wortmannin at a concentration-inhibiting ATM and DNA-PK. Caffeine, an inhibitor of ATM and ATM-Rad3 related (ATR) but not DNA-PK, generates an ataxia-telangiectasia-like response in wild-type cells, prevents completely RPA2 phosphorylation in DNA-PKcs deficient cells, but has no effect on ataxia-telangiectasia cells. These observations rule out ATR and implicate both ATM and DNA-PK in RPA2 phosphorylation after exposure to IR. UCN-01, an inhibitor of protein kinase C, Chk1, and cyclin-dependent kinases, has no effect on IR-induced RPA2 phosphorylation. Because UCN-01 abrogates checkpoint responses, this observation dissociates RPA2 phosphorylation from checkpoint activation. Phosphorylated RPA has a higher affinity for nuclear structures than unphosphorylated RPA suggesting functional alterations in the protein. In an in vitro assay for DNA replication, DNA-PK is the sole kinase phosphorylating RPA2, indicating that processes not reproduced in the in vitro assay are required for RPA2 phosphorylation by ATM. Because RPA2 phosphorylation kinetics are distinct from those of the S phase checkpoint, we propose that DNA-PK and ATM cooperate to phosphorylate RPA after DNA damage to redirect the functions of the protein from DNA replication to DNA repair.
复制蛋白A(RPA,也称为人单链DNA结合蛋白)是一种三聚体多功能蛋白复合物,参与DNA复制、DNA修复和重组。细胞暴露于电离辐射(IR)和其他DNA损伤剂后,可观察到RPA2亚基发生磷酸化,这表明修饰后的蛋白在DNA损伤后的DNA复制调控或DNA修复中起作用。虽然共济失调毛细血管扩张症突变(ATM)和DNA依赖性蛋白激酶(DNA-PK)可在体外使RPA2磷酸化,但其在体内的作用仍不确定,且已有相互矛盾的报道。在此我们表明,在缺乏这些激酶之一的细胞中,RPA2磷酸化会延迟,而在用抑制ATM和DNA-PK的浓度的渥曼青霉素处理后,野生型、ATM或DNA-PK缺陷型细胞中的RPA2磷酸化会完全消失。咖啡因是ATM和ATM-Rad3相关蛋白(ATR)的抑制剂,但不是DNA-PK的抑制剂,它在野生型细胞中产生类似共济失调毛细血管扩张症的反应,在DNA-PKcs缺陷型细胞中完全阻止RPA2磷酸化,但对共济失调毛细血管扩张症细胞没有影响。这些观察结果排除了ATR,并表明ATM和DNA-PK在暴露于IR后均参与RPA2磷酸化。UCN-01是蛋白激酶C、Chk1和细胞周期蛋白依赖性激酶的抑制剂,对IR诱导的RPA2磷酸化没有影响。由于UCN-01消除了检查点反应,这一观察结果将RPA2磷酸化与检查点激活区分开来。磷酸化的RPA对核结构的亲和力高于未磷酸化的RPA,这表明该蛋白的功能发生了改变。在一项DNA复制的体外试验中,DNA-PK是唯一使RPA2磷酸化的激酶,这表明ATM使RPA2磷酸化需要体外试验中未重现的过程。由于RPA2磷酸化动力学与S期检查点不同,我们提出DNA-PK和ATM在DNA损伤后协同作用使RPA磷酸化,从而将该蛋白的功能从DNA复制重定向到DNA修复。