Ruan B, Ahel I, Ambrogelly A, Becker H D, Bunjun S, Feng L, Tumbula-Hansen D, Ibba M, Korencic D, Kobayashi H, Jacquin-Becker C, Mejlhede N, Min B, Raczniak G, Rinehart J, Stathopoulos C, Li T, Söll D
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
Acta Biochim Pol. 2001;48(2):313-21.
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.
翻译是核糖体利用信使核糖核酸(mRNA)中所含遗传信息指导蛋白质合成的过程。转运核糖核酸(tRNA)携带着氨基酸被带到核糖体,在那里它们与mRNA中相应的三核苷酸密码子配对。氨基酸被连接到新生的多肽上,核糖体则继续移动到下一个密码子。因此,mRNA中的密码子与tRNA反密码子的顺序配对决定了蛋白质中氨基酸的顺序。因此,为了准确翻译,tRNA必须只与对应于RNA反密码子的氨基酸偶联。这主要但并非唯一地通过氨酰tRNA合成酶将适当的氨基酸直接连接到相应tRNA的3'末端来实现。为确保遗传信息的准确翻译,氨酰tRNA合成酶必须表现出极高的底物特异性。尽管有这种高度保守的功能,但最近对全基因组分析得出的研究表明,氨酰tRNA合成存在显著程度的进化多样性。例如,已确定了天冬酰胺tRNA、半胱氨酸tRNA、谷氨酰胺tRNA和赖氨酸tRNA合成的非经典途径。对非经典氨酰tRNA合成的表征揭示了意想不到的进化分歧水平,也为当代氨酰tRNA合成酶的可能前体提供了新见解。