Summers J S, Hoogstraten C G, Britt R D, Base K, Shaw B R, Ribeiro A A, Crumbliss A L
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
Inorg Chem. 2001 Dec 17;40(26):6547-54. doi: 10.1021/ic010728w.
Methyl phosphite ((CH(3)O)P(H)(O)(2)(-); MeOPH) and methylethyl phosphate ((CH(3)O)P(OCH(2)CH(3))(O)(2)(-); MEP) are two members of a class of anionic ligands whose (31)P T(2) relaxation rates are remarkably sensitive to paramagnetic metal ions. The temperature dependence of the (31)P NMR line broadenings caused by the Mn(H(2)O)(6)(2+) ion and a water-soluble manganese(III) porphyrin (Mn(III)TMPyP(5+)) indicates that the extent of paramagnetic relaxation enhancement is a measure of the rate at which the anionic probes come into physical contact with the paramagnetic center (i.e., enter the inner coordination shell); that is, piDeltanu(par) = k(assn)[M], where Deltanu(par) is the difference between the line widths of the resonance in paramagnetic and diamagnetic solutions, and k(assn) is the second-order rate constant for association of the phosphorus ligand with the metal, M. Comparison of the (31)P T(1) and T(2) relaxation enhancements shows that rapid T(2) relaxation by the metal ion is caused by scalar interaction with the electronic spin. Relaxation of the phosphorus-bound proton of MeOPH ((1)H-P) by Mn(III)TMPyP(5+) displayed intermediate exchange kinetics over much of the observable temperature range. The field strength dependence of (1)H-P T(2) enhancement and the independence of the (31)P T(2) support these assertions. As in the case of the (31)P T(2), the (1)H-P T(2) relaxation enhancement results from scalar interaction with the electronic spin. The scalar coupling interpretation of the NMR data is supported by a pulsed EPR study of the interactions of Mn(H(2)O)(6)(2+) with the P-deuterated analogue of methyl phosphite, CH(3)OP((2)H)(O)(2)(-). The electron to (31)P and (2)H nuclear scalar coupling constants were found to be 4.6 and 0.10 MHz, respectively. In contrast, the effects of paramagnetic ions on the methoxy and ethoxy (1)H resonances of MeOPH and MEP are weak, and the evidence suggests that relaxation of these nuclei occurs by a dipolar mechanism. The wide variation in the relaxation sensitivities of the (1)H and (31)P nuclei of MeOPH and MEP permits us to study how differences in the strengths of the interactions between an observed nucleus and a paramagnetic center affect NMR T(2) relaxations. We propose that these anion ligand probes may be used to study ligand-exchange reactivities of manganese complexes without requiring variable temperature studies. The (31)P T(2) is determined by chemical association kinetics when the following condition is met: (T(2M,P)/T(2M,H))(Deltanu(P)/Deltanu(HP) - 1) < 0.2 where T(2M,P) and T(2M,H) are the transverse relaxation times of the (31)P and (1)H nuclei when the probe is bound to the metal, and Deltanu(P) and Deltanu(HP) are the paramagnetic line broadenings of the (31)P and (1)H-P nuclei, respectively. We assert that the ratio T(2M,P)/T(2M,H) can be estimated for a general metal complex using the results of EPR and NMR experiments.
亚磷酸甲酯((CH(3)O)P(H)(O)(2)(-);MeOPH)和甲基乙基磷酸酯((CH(3)O)P(OCH(2)CH(3))(O)(2)(-);MEP)是一类阴离子配体中的两个成员,其(31)P T(2)弛豫速率对顺磁性金属离子非常敏感。由Mn(H(2)O)(6)(2+)离子和一种水溶性锰(III)卟啉(Mn(III)TMPyP(5+))引起的(31)P NMR谱线展宽的温度依赖性表明,顺磁性弛豫增强的程度是阴离子探针与顺磁性中心发生物理接触(即进入内配位层)速率的一种度量;也就是说,πΔν(par) = k(assn)[M],其中Δν(par)是顺磁性和抗磁性溶液中共振线宽的差值,k(assn)是磷配体与金属M缔合的二级速率常数。(31)P T(1)和T(2)弛豫增强的比较表明,金属离子引起的快速T(2)弛豫是由与电子自旋的标量相互作用导致的。在大部分可观测温度范围内,Mn(III)TMPyP(5+)对MeOPH的磷结合质子((1)H-P)的弛豫表现出中间交换动力学。(1)H-P T(2)增强的场强依赖性以及(31)P T(2)的独立性支持了这些论断。与(31)P T(2)的情况一样,(1)H-P T(2)弛豫增强是由与电子自旋的标量相互作用引起的。对Mn(H(2)O)(6)(2+)与亚磷酸甲酯的P-氘代类似物CH(3)OP((2)H)(O)(2)(-)相互作用的脉冲EPR研究支持了NMR数据的标量耦合解释。发现电子与(31)P和(2)H核的标量耦合常数分别为4.6和0.10 MHz。相比之下,顺磁性离子对MeOPH和MEP的甲氧基和乙氧基(1)H共振的影响较弱,且证据表明这些核的弛豫是通过偶极机制发生的。MeOPH和MEP的(1)H和(31)P核弛豫敏感性的广泛差异使我们能够研究观测核与顺磁性中心之间相互作用强度的差异如何影响NMR T(2)弛豫。我们提出,这些阴离子配体探针可用于研究锰配合物的配体交换反应活性,而无需进行变温研究。当满足以下条件时,(31)P T(2)由化学缔合动力学决定:(T(2M,P)/T(2M,H))(Δν(P)/Δν(HP) - 1) < 0.2,其中T(2M,P)和T(2M,H)是探针与金属结合时(31)P和(1)H核的横向弛豫时间,Δν(P)和Δν(HP)分别是(31)P和(1)H-P核的顺磁性谱线展宽。我们断言,对于一般的金属配合物,可以使用EPR和NMR实验的结果来估计T(2M,P)/T(2M,H)的比值。