Suppr超能文献

鲁棒随机共振:脉冲噪声中的信号检测与自适应

Robust stochastic resonance: signal detection and adaptation in impulsive noise.

作者信息

Kosko B, Mitaim S

机构信息

Department of Electrical Engineering, Signal and Image Processing Institute, University of Southern California, Los Angeles, California 90089-2564, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 1):051110. doi: 10.1103/PhysRevE.64.051110. Epub 2001 Oct 22.

Abstract

Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric alpha-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter alpha falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the alpha-stable noise. Linear regression shows that an exponential law gamma(opt)(alpha)=cA(alpha) describes this relation between the impulsive index alpha and the SR-optimal noise dispersion gamma(opt). The results show that SR is robust against noise "outliers." So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

摘要

当噪声改善系统性能指标(如频谱信噪比或互相关指标)时,就会出现随机共振(SR)。所有关于随机共振的研究都假定强迫噪声具有有限方差。大多数研究还进一步假定噪声是高斯噪声。我们表明,对于脉冲噪声或无限方差噪声这种更一般的情况,随机共振仍然会发生。随着噪声的脉冲性增强,随机共振效应会逐渐减弱。我们在对称α稳定钟形曲线族上研究这种衰减效应,高斯钟形曲线是该曲线族的一个特殊情况。当参数α从2(高斯情况)降至1(柯西情况)甚至更低值时,这些钟形曲线的尾部会变厚。尾部变厚会产生更频繁、更剧烈的噪声脉冲。当我们绘制信噪比或信号相关指标相对于α稳定噪声的离散度的曲线时,随机共振文献中的主要反馈和前馈模型都显示出对于周期性强迫信号的这种随机共振衰减效应。线性回归表明,指数定律γ(opt)(α)=cA(α)描述了脉冲指数α与随机共振最优噪声离散度γ(opt)之间的这种关系。结果表明,随机共振对噪声“异常值”具有鲁棒性。因此,随机共振在自然界中可能比以前认为的更为普遍。这种鲁棒性也有利于在工程系统中使用随机共振。我们进一步表明,对于信噪比性能指标,自适应系统可以为两个标准随机共振模型(四次双稳模型和菲茨休 - 纳古莫神经元模型)学习最优噪声离散度。这也有利于随机共振的实际应用,并表明进化可能已经调整了生物系统对噪声敏感的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验