Puri S, Das S K, Cross M C
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056140. doi: 10.1103/PhysRevE.64.056140. Epub 2001 Oct 30.
Results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the two-dimensional complex Ginzburg-Landau equation have been presented. In particular, spiral defects have been used to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the single-spiral correlation function shows a sequence of singularities-analogous to those seen for time-dependent Ginzburg-Landau models with O(n) symmetry, where n is even.
给出了二维复金兹堡 - 朗道方程中非平衡动力学的全面分析和数值研究结果。特别地,螺旋缺陷已被用于表征畴生长规律和演化形态。对单螺旋相关函数的渐近分析显示出一系列奇点,类似于具有(O(n))对称性((n)为偶数)的含时金兹堡 - 朗道模型中所观察到的奇点。