Lin X, Asgari K, Putzi M J, Gage W R, Yu X, Cornblatt B S, Kumar A, Piantadosi S, DeWeese T L, De Marzo A M, Nelson W G
Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
Cancer Res. 2001 Dec 15;61(24):8611-6.
Among the many somatic genome alterations present in cancer cells, changes in DNA methylation may represent reversible "epigenetic" lesions, rather than irreversible "genetic" alterations. Cancer cell DNA is typically characterized by increases in the methylation of CpG dinucleotides clustered into CpG islands, near the transcriptional regulatory regions of critical genes, and by an overall reduction in CpG dinucleotide methylation. The transcriptional "silencing" of gene expression associated with such CpG island DNA hypermethylation presents an attractive therapeutic target: restoration of "silenced" gene expression may be possible via therapeutic reversal of CpG island hypermethylation. 5-Aza-cytidine (5-aza-C) and 5-aza-deoxycytidine (5-aza-dC), nucleoside analogue inhibitors of DNA methyltransferases, have been widely used in attempts to reverse abnormal DNA hypermethylation in cancer cells and restore "silenced" gene expression. However, clinical utility of the nucleoside analogue DNA methyltransferase inhibitors has been limited somewhat by myelosuppression and other side effects. Many of these side effects are characteristic of nucleoside analogues that are not DNA methyltransferase inhibitors, offering the possibility that nonnucleoside analogue DNA methyltransferase inhibitors might not possess such side effects. Human prostate cancer (PCA) cells characteristically contain hypermethylated CpG island sequences encompassing the transcriptional regulatory region of GSTP1, the gene encoding the pi-class glutathione S-transferase (GSTP1), and fail to express GSTP1 as a consequence of transcriptional "silencing." Inactivation of GSTP1 by CpG island hypermethylation, the most common somatic genome alteration yet reported for human PCAs, occurs early during human prostatic carcinogenesis and results in a loss of GSTP1 "caretaker" function, leaving prostate cells with inadequate defenses against oxidant and electrophile carcinogens. We report here that the drug procainamide, a nonnucleoside inhibitor of DNA methyltransferases, reversed GSTP1 CpG island hypermethylation and restored GSTP1 expression in LNCaP human PCA cells propagated in vitro or in vivo as xenograft tumors in athymic nude mice.
在癌细胞中存在的众多体细胞基因组改变中,DNA甲基化的变化可能代表可逆的“表观遗传”损伤,而非不可逆的“遗传”改变。癌细胞DNA的典型特征是,在关键基因转录调控区域附近,成簇形成CpG岛的CpG二核苷酸甲基化增加,以及CpG二核苷酸甲基化总体减少。与这种CpG岛DNA高甲基化相关的基因表达转录“沉默”呈现出一个有吸引力的治疗靶点:通过治疗性逆转CpG岛高甲基化,有可能恢复“沉默”的基因表达。5-氮杂胞苷(5-aza-C)和5-氮杂脱氧胞苷(5-aza-dC),作为DNA甲基转移酶的核苷类似物抑制剂,已被广泛用于尝试逆转癌细胞中异常的DNA高甲基化并恢复“沉默”的基因表达。然而,核苷类似物DNA甲基转移酶抑制剂的临床应用在一定程度上受到骨髓抑制和其他副作用的限制。这些副作用中的许多是并非DNA甲基转移酶抑制剂的核苷类似物的特征,这表明非核苷类似物DNA甲基转移酶抑制剂可能不会有此类副作用。人前列腺癌(PCA)细胞的特征是,包含编码π类谷胱甘肽S-转移酶(GSTP1)的基因GSTP1转录调控区域的CpG岛序列发生高甲基化,并且由于转录“沉默”而无法表达GSTP1。CpG岛高甲基化导致GSTP1失活,这是人类PCA中迄今报道的最常见体细胞基因组改变,发生在人类前列腺癌发生的早期,并导致GSTP1“守护者”功能丧失,使前列腺细胞对氧化剂和亲电致癌物的防御不足。我们在此报告,普鲁卡因胺这种DNA甲基转移酶的非核苷抑制剂,可逆转GSTP1 CpG岛高甲基化,并在体外培养或作为无胸腺裸鼠体内异种移植肿瘤生长的LNCaP人PCA细胞中恢复GSTP1表达。