Barriault D, Simard C, Chatel H, Sylvestre M
Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Centre de microbiologie et biotechnologie, Université du Québec, Pointe-Claire, Canada.
Can J Microbiol. 2001 Nov;47(11):1025-32.
The bacterial degradation of polychlorinated biphenyls depends on the ability of the enzyme biphenyl 2,3-dioxygenase (BPDO) to catalyze their oxygenation. Analysis of hybrid BPDOs obtained using common restriction sites to exchange large DNA fragments between LB400 bphA and B-356 bphA showed that the C-terminal portion of LB400 alpha subunit can withstand extensive structural modifications, and that these modifications can change the catalytic properties of the enzyme. On the other hand, exchanging the C-terminal portion of B-356 BPDO alpha subunit with that of LB400 alpha subunit generated inactive chimeras. Data encourage an enzyme engineering approach, consisting of introducing extensive modifications of the C-terminal portion of LB400 bphA to extend BPDO catalytic properties toward polychlorinated biphenyls.
多氯联苯的细菌降解取决于联苯2,3 -双加氧酶(BPDO)催化其氧化的能力。对使用常见限制酶切位点在LB400 bphA和B - 356 bphA之间交换大DNA片段获得的杂交BPDO进行分析表明,LB400α亚基的C末端部分能够承受广泛的结构修饰,并且这些修饰可以改变酶的催化特性。另一方面,将B - 356 BPDOα亚基的C末端部分与LB400α亚基的C末端部分进行交换会产生无活性的嵌合体。这些数据鼓励采用一种酶工程方法,即对LB400 bphA的C末端部分进行广泛修饰,以扩展BPDO对多氯联苯的催化特性。