Krüger Markus, Braun Thomas
Institute of Physiological Chemistry, University of Halle-Wittenberg, 06097 Halle, Germany.
Mol Cell Biol. 2002 Feb;22(3):792-800. doi: 10.1128/MCB.22.3.792-800.2002.
The neuronal stem cell leukemia (NSCL) basic helix-loop-helix factors are neural cell-specific transcription factors. We have disrupted the NSCL-1 gene by homologous recombination and replaced the coding region with a beta-galactosidase reporter cassette to study the role of NSCL-1 in neuronal development and to follow the fate of NSCL-1 mutant cells. NSCL-1 mutant mice are viable and fertile on various genetic backgrounds and do not show any obvious signs of neurological malfunction. No differences in the distribution of NSCL-1 mutant or heterozygous neuronal cells were observed in the diencephalon, hippocampus, neocortex, and cerebellum at different stages of development. Likewise, no defects were found in the laminar organization of the cortex, and the distinct neuronal subpopulation appeared normal during development of the neocortex. Analysis of sensory neurons which strongly express NSCL-1 revealed that the spatiotemporal expression of neuronal differentiation factors, such as NeuroD and SCG-10, was not altered in developing distal and proximal cranial ganglia of mutant mice. In the cerebellum expression of NSCL-1 was confined to the proliferative and premigratory zone of the external granular layer and the internal granular layer. Interestingly, unlike cerebella of Math1(-/-) or NeuroD2(-/-) mice, NSCL-1-deficient mice have no obvious developmental defect, and neurons of the cerebellum appeared fully differentiated. Despite similar expression patterns of NSCL-1 and NSCL-2 in various areas of the diencephalon, including the arcuate nucleus and paraventricular nucleus, NSCL-1(-/-) mice are fertile and show no adult onset of obesity like NSCL-2 mutant mice. Double-mutant NSCL-1(-/-)-NSCL-2(-/-) mice do not show any additional obvious malformations of the central nervous system, although both genes are expressed in a largely overlapping pattern. Our results argue against a simple functional redundancy within the NSCL gene family.
神经元干细胞白血病(NSCL)碱性螺旋-环-螺旋因子是神经细胞特异性转录因子。我们通过同源重组破坏了NSCL-1基因,并用β-半乳糖苷酶报告基因盒替换了编码区,以研究NSCL-1在神经元发育中的作用,并追踪NSCL-1突变细胞的命运。NSCL-1突变小鼠在各种遗传背景下均能存活且可育,未表现出任何明显的神经功能障碍迹象。在发育的不同阶段,间脑、海马、新皮层和小脑中未观察到NSCL-1突变或杂合神经元细胞分布的差异。同样,在皮层的层状组织中未发现缺陷,并且在新皮层发育过程中不同的神经元亚群看起来正常。对强烈表达NSCL-1的感觉神经元的分析表明,在突变小鼠发育中的远端和近端颅神经节中,神经元分化因子(如NeuroD和SCG-10)的时空表达未发生改变。在小脑中,NSCL-1的表达局限于外颗粒层和内颗粒层的增殖和迁移前区。有趣的是,与Math1(-/-)或NeuroD2(-/-)小鼠的小脑不同,NSCL-1缺陷小鼠没有明显的发育缺陷,并且小脑神经元似乎已完全分化。尽管NSCL-1和NSCL-2在间脑的各个区域(包括弓状核和室旁核)具有相似的表达模式,但NSCL-1(-/-)小鼠可育,并且不像NSCL-2突变小鼠那样出现成年期肥胖。双突变NSCL-1(-/-)-NSCL-2(-/-)小鼠未表现出任何额外明显的中枢神经系统畸形,尽管这两个基因在很大程度上以重叠模式表达。我们的结果反对NSCL基因家族内存在简单的功能冗余。