Suppr超能文献

从药效学和药代动力学特征预测抗菌反应。

Predicting antibacterial response from pharmacodynamic and pharmacokinetic profiles.

作者信息

Nicolau D P

机构信息

Hartford Hospital, Connecticut 06102-5037, USA.

出版信息

Infection. 2001 Dec;29 Suppl 2:11-5.

Abstract

The aim of antibacterial chemotherapy is to achieve sufficient drug concentrations at the site of infection for an adequate length of time to ensure bacterial eradication and optimize clinical success. Whether the desired outcome is achieved or not depends on a number of pathogen-, drug- and patient-related factors. Neither microbiologic activity nor antibacterial pharmacokinetic data alone can adequately describe the complex interaction between pathogen, host and antibacterial during the disease process. A relatively new discipline - pharmacodynamics - seeks to integrate both microbiologic and pharmacokinetic data. The particular model that best predicts clinical outcome depends on the pattern of microbial killing and the persistence of antibacterial effects after plasma concentrations have fallen below the minimum inhibitory concentration (MIC) for the target pathogen (post-antibiotic effect [PAE]). The beta-lactams, for example, exhibit time-dependent bacterial killing with minimal persistent effects. Time above MIC (T(MIC)) is therefore the parameter that best correlates with clinical efficacy for these agents and that, in turn, necessitates multiple daily dosing to optimize the duration of exposure. The macrolides erythromycinA and clarithromycin exhibit a similar pharmacokinetic/pharmacodynamic relationship to that of the beta-lactams, although for clarithromycin the area under the concentration-time curve (AUC) also correlates with clinical outcome (reflecting the more prolonged PAE of this agent). Azithromycin, ketolides, such as telithromycin (HMR 3647), streptogramins and fluoroquinolones exhibit concentration-dependent killing and have prolonged persistent effects, such that the AUC:MIC or Cmax:MIC ratio correlates most closely with clinical efficacy. For these agents the aim is to maximize drug concentrations to which the target pathogen is exposed and this may require higher doses and hence enable longer dosing intervals to be used. In summary, pharmacodynamic models provide a unique approach to determining likely in vivo activity of individual antibacterial agents and prediction of clinical outcomes.

摘要

抗菌化疗的目的是在感染部位达到足够的药物浓度,并持续足够长的时间,以确保根除细菌并优化临床疗效。能否实现预期结果取决于许多与病原体、药物和患者相关的因素。单独的微生物活性或抗菌药代动力学数据都无法充分描述疾病过程中病原体、宿主和抗菌药物之间的复杂相互作用。一门相对较新的学科——药效学——试图整合微生物学和药代动力学数据。最能预测临床结果的特定模型取决于微生物杀灭模式以及血浆浓度降至目标病原体的最低抑菌浓度(MIC)以下后的抗菌作用持续时间(抗生素后效应[PAE])。例如,β-内酰胺类药物表现出时间依赖性细菌杀灭作用,持续效应最小。因此,高于MIC的时间(T(MIC))是与这些药物的临床疗效最相关的参数,进而需要每日多次给药以优化暴露持续时间。大环内酯类药物红霉素A和克拉霉素与β-内酰胺类药物具有相似的药代动力学/药效学关系,不过对于克拉霉素,浓度-时间曲线下面积(AUC)也与临床结果相关(反映了该药物更长的PAE)。阿奇霉素、酮内酯类药物(如泰利霉素[HMR 3647])、链阳菌素类药物和氟喹诺酮类药物表现出浓度依赖性杀灭作用,且具有较长的持续效应,因此AUC:MIC或Cmax:MIC比值与临床疗效最密切相关。对于这些药物,目标是使目标病原体暴露于其中的药物浓度最大化,这可能需要更高的剂量,从而能够使用更长的给药间隔。总之,药效学模型为确定个体抗菌药物的体内活性和预测临床结果提供了一种独特的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验