Suppr超能文献

[腰痛的解剖学背景:腰椎管和椎间盘的变异性与退变]

[Anatomical background of low back pain: variability and degeneration of the lumbar spinal canal and intervertebral disc].

作者信息

van Roy P, Barbaix E, Clarijs J P, Mense S

机构信息

Institut für Experimentelle Anatomie, Freie Universität Brüssel, Belgien.

出版信息

Schmerz. 2001 Dec;15(6):418-24. doi: 10.1007/s004820100026.

Abstract

The central and lateral lumbar canals constitute complex osteofibrous neurovascular tunnels, allowing movement and deformation of the spine without loss of their main configuration. Intervertebral discs play an important role in determining their configuration. Disc degeneration may alter or even threat the functional anatomical relationships between successive adjacent "juncturae" of the vertebral column. Shape and morphometric aspects of the bony neural canals reveal level dependency [39], inter-individual variation [11], and are particularly susceptible for changes with aging [49]. Articular tropism and other left-right differences may influence their morphology. In the epidural compartments behind the vertebral bodies, a sagittal membrane may totally or partly connect the deeper layer of the posterior longitudinal ligament (PLL) with the posterior midline of the vertebral body. This membrane is considered clinically significant in the prevention of movement of disc material from one side to the other at the level of the vertebral bodies [44]. Meningovertebral ligaments represent a heterogenous group of membranous formations, connecting the dura with the PPL and other elements of the spinal canal. They prevent the dura from moving away from the bony container. These ligaments may vary from loose areolar tissue to clearly individualised ligaments and from pure midsagittal septa to more laterally oriented attachments. A double cross vault structure between the PPL and the dura mater often extends from L3 to the end of the dural envelope [3]. A retrospective study of medial and paramedial attachments in CT- and MRT-scans confirmed the presence of a mediosagittal structure below L3 in 35% of the cases 7). It was hypothesized that meningovertebral ligaments may play a [7] role as a barrier to transverse displacement of extruded disc material [43]. The surrounding morphology renders the lateral neural canal its typical inverted teardrop shape [39]. The subpedicular notch of the upper vertebra provides the widest part and represents the neural foramen strictu sensu. The posterolateral aspect of two articulating vertebrae and the interposed intervertebral disc constitute the anterior wall. The morphology of the anteroinferior aspect of the intervertebral foramen strongly depends on the condition of the apophyseal rings and the intervertebral disc. The latter may show a slight physiological posterior bulging at lower lumbar levels. The posterior wall of the nerve root canal is represented by the ligamentum flavum, the pars interarticularis of the upper vertebra, and the superior articular facet of the vertebra below. Thickening of the ligamentum flavum must be considered in relationship to alterations of anterior components: trabecular reorganization and spreading of vertebrae in aging [49], and disc degeneration [38, 49]. Nerve root sleeves display a level dependent, variable oblique course from their emanation from the thecal sac towards the outer third of the neural canal [39]. The presence of anamalous lumbosacral nerve roots may result in considerable course alterations, originating from an abnormal high or low level emanation, conjoined nerve roots, a double set of nerve roots or anastomosis between nerve roots of adjacent levels [20]. Variation exists in the position of the dorsal root ganglia (DRG) relative to the intervertebral foramen. An intraforaminal position seems to be more common at L4 and L5 levels; an intraspinal position has to be expected for the S1 DRG. Intraspinal position of L4 and L5 DRG renders them more susceptible to compression from a superior articular facet or a bulging disc. Cases of extraforaminal positions of dorsal root ganglia have been reported at L4 and L5 levels [22]. On its recurrent course through the lateral canal, the sinuvertebral nerve(s) supplies the laterodorsal outer annulus of the intervertebral disc, the PLL, the anterior 2/3 of the dural sac and the anterior vascular plexus [4, 14]. Many blood vessels pass through the lateral neural canal: the anterior and posterior spinal canal branches, anterior and posterior radicular branches, and veins of the anterior and posterior internal vertebral venous plexus [9]. Per segment, one ore two thick and one to four thin sinuvertebral nerves (SVN) originate from rami communicantes close to the connection of the latter to the spinal nerve [14]. The extensive ramifications of the thin SVNs complete a thorough network at the floor of the central lumbar canal. A large part of it supplies the PLL. The PLL is assumed to play an important role in proprio- and nociception [34, 39]. It is probably one of the first structures to mediate nociceptive information from disc tissue [14]. After injection of neuronal tracers into the sympathetic trunk at L3-L4 in rats, labeled cells were found in higher DRGs as well as labeled nerve fibers in the dura mater at lower levels. These findings indicate both a segmental and a non segmental pathway of sensory innervation of the dura mater and a role of higher DRGs in mediating LBP [25]. In the neighborhood of the SVN, other small branches emanate from the rami communicantes and join the dorsal ramus and the segmental artery that enters the neural canal. The sympathetic nerve plexus inside the anterior longitudinal ligament and the SNVs provide a network of nerve fibers around the vertebral bodies and intervertebral discs. These pathways explain the sympathetic component of the innervation of a number of spinal structures. The dorsal ramus innervates the facet joints at the corresponding level and one below, before it gives off muscular and cutaneous branches.

摘要

腰椎中央管和侧隐窝构成复杂的骨纤维神经血管通道,允许脊柱移动和变形而不丧失其主要结构。椎间盘在决定其结构方面起重要作用。椎间盘退变可能改变甚至威胁脊柱连续相邻“连接部”之间的功能解剖关系。骨性神经管的形状和形态学方面显示出节段依赖性[39]、个体间差异[11],并且特别容易随着年龄增长而发生变化[49]。关节面朝向和其他左右差异可能影响其形态。在椎体后方的硬膜外间隙中,矢状膜可能完全或部分地将后纵韧带(PLL)的深层与椎体后中线相连。该膜在防止椎间盘物质在椎体水平从一侧移动到另一侧方面具有临床意义[44]。脊膜椎韧带是一组异质性的膜性结构,将硬脊膜与后纵韧带及椎管的其他结构相连。它们防止硬脊膜从骨性容器中移位。这些韧带可以从疏松的蜂窝组织到明显个体化的韧带,从纯粹的矢状中隔到更偏向外侧的附着结构不等。后纵韧带和硬脊膜之间的双交叉穹窿结构通常从L3延伸至硬脊膜囊末端[3]。一项对CT和MRI扫描中内侧和旁内侧附着结构的回顾性研究证实,35%的病例在L3以下存在矢状中隔结构[7]。据推测,脊膜椎韧带可能作为突出椎间盘物质横向移位的屏障发挥作用[43]。周围形态使侧隐窝呈典型的倒泪滴形[39]。上位椎体的椎弓根下切迹提供了最宽部分,代表严格意义上的神经孔。两个相邻椎体的后外侧方面及其间的椎间盘构成前壁。椎间孔前下方面的形态很大程度上取决于骨突环和椎间盘的状况。在腰椎较低节段,后者可能会出现轻微的生理性后凸。神经根通道的后壁由黄韧带、上位椎体的关节突间部和下位椎体的上关节突构成。黄韧带增厚必须与前部结构的改变相关联考虑:衰老时椎体小梁的重组和扩展[49]以及椎间盘退变[38,49]。神经根袖从硬膜囊发出向神经管外侧三分之一走行时呈现出节段依赖性的可变倾斜路径[39]。腰骶神经根异常可能导致相当大的走行改变,源于异常的高位或低位发出、联合神经根、双组神经根或相邻节段神经根之间的吻合[20]。背根神经节(DRG)相对于椎间孔的位置存在变异。椎间孔内位置在L4和L5节段似乎更常见;S1 DRG预期位于椎管内。L4和L5 DRG的椎管内位置使其更容易受到上关节突或突出椎间盘的压迫。已有报道L4和L5节段背根神经节位于椎间孔外的情况[22]。窦椎神经在通过侧隐窝的折返行程中,支配椎间盘的后外侧外环、后纵韧带、硬膜囊的前2/3及前血管丛[4,14]。许多血管穿过侧隐窝:脊髓前、后椎管支,前、后根支以及椎体内前、后静脉丛的静脉[9]。每节段有一或两条粗的和一至四条细的窦椎神经(SVN)发自靠近其与脊神经连接处的交通支[14]。细SVN的广泛分支在腰椎中央管底部形成一个完整的网络。其大部分支配后纵韧带。后纵韧带被认为在本体感觉和伤害感受中起重要作用[34,39]。它可能是最早介导来自椎间盘组织伤害性信息的结构之一[14]。在大鼠L3 - L4水平将神经示踪剂注入交感干后,在较高节段的背根神经节中发现了标记细胞,以及在较低节段的硬脊膜中发现了标记神经纤维。这些发现表明硬脊膜感觉神经支配存在节段性和非节段性途径,以及较高节段的背根神经节在介导腰痛中的作用[25]。在SVN附近,其他小分支从交通支发出并与背支和进入神经管的节段动脉相连。前纵韧带内的交感神经丛和窦椎神经在椎体和椎间盘周围提供了一个神经纤维网络。这些途径解释了许多脊柱结构神经支配中的交感成分。背支在发出肌肉和皮支之前,支配相应节段及下一较低节段的小关节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验