Trotsenko Yuri A, Khmelenina Valentina N
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
Arch Microbiol. 2002 Feb;177(2):123-31. doi: 10.1007/s00203-001-0368-0. Epub 2001 Dec 1.
This review summarizes recent findings on the biology of obligate methanotrophic bacteria living in various extreme environments. By using molecular ecology techniques, it has become clear that obligate methanotrophs are ubiquitous in nature and well adapted to high or low temperature, pH and salinity. The isolation and characterization of pure cultures has led to the discovery of several new genera and species of extremophilic/tolerant methanotrophs. Their major physiological role is participation in the methane cycle and supplying C(1) intermediates and various metabolites to other members of microbial communities in extreme ecosystems. To survive under extreme conditions, methanotrophs have developed diverse structure-function adaptive mechanisms including cell-surface layer formation, changes in cellular phospholipid composition and de novo synthesis of organic osmolytes such as ectoine, 5-oxoproline and sucrose. However, despite the above advances, basic knowledge of other stress protectants, as well as bioenergetic and genetic aspects of methanotroph adaptation, is still lacking. This information is necessary for better understanding the molecular mechanisms underlying the versatility of methanotrophs and for the development of novel biotechnological processes.
本综述总结了关于生活在各种极端环境中的专性甲烷氧化细菌生物学的最新研究结果。通过使用分子生态学技术,现已明确专性甲烷营养菌在自然界中广泛存在,并且能很好地适应高温或低温、pH值和盐度。纯培养物的分离和特性分析导致发现了几种新的嗜极端/耐极端甲烷营养菌属和种。它们的主要生理作用是参与甲烷循环,并为极端生态系统中微生物群落的其他成员提供C(1)中间体和各种代谢产物。为了在极端条件下生存,甲烷营养菌已发展出多种结构-功能适应性机制,包括形成细胞表面层、改变细胞磷脂组成以及从头合成有机渗透剂,如四氢嘧啶、5-氧代脯氨酸和蔗糖。然而,尽管有上述进展,但关于其他应激保护剂以及甲烷营养菌适应的生物能量和遗传方面的基础知识仍然缺乏。这些信息对于更好地理解甲烷营养菌多功能性的分子机制以及开发新的生物技术过程是必要的。