Farhy Leon S, Straume Martin, Johnson Michael L, Kovatchev Boris, Veldhuis Johannes D
Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Virginia Health System, Charlottesville, Virginia 22908, USA.
Am J Physiol Regul Integr Comp Physiol. 2002 Mar;282(3):R753-64. doi: 10.1152/ajpregu.00407.2001.
Growth hormone (GH) secretion, controlled principally by a GH-releasing hormone (GHRH) and GH release-inhibiting hormone [somatostatin (SRIF)] displays vivid sexual dimorphism in many species. We hypothesized that relatively small differences within a dynamic core GH network driven by regulatory interactions among GH, GHRH, and SRIF explain the gender contrast. To investigate this notion, we implemented a minimal biomathematical model based on two coupled oscillators: time-delayed reciprocal interactions between GH and GHRH, which endow high-frequency (40-60 min) GH oscillations, and time-lagged bidirectional GH-SRIF interactions, which mediate low-frequency (occurring every 3.3 h) GH volleys. We show that this basic formulation, sufficient to explain GH dynamics in the male rat [Farhy LS, Straume M, Johnson ML, Kovatchev BP, and Veldhuis JD. Am J Physiol Regulatory Integrative Comp Physiol 281: R38-R51, 2001], emulates the female pattern of GH release, if autofeedback of GH on SRIF is relaxed. Relief of GH-stimulated SRIF release damps the slower volleylike oscillator, allowing emergence of the underlying high-frequency oscillations that are sustained by the GH-GHRH interactions. Concurrently, increasing variability of basal somatostatin outflow introduces quantifiable, sex-specific disorderliness of the release process typical of female GH dynamics. Accordingly, modulation of GH autofeedback on SRIF within the interactive GH-GHRH-SRIF ensemble and heightened basal SRIF variability are sufficient to transform the well-ordered, 3.3-h-interval, multiphasic, volleylike male GH pattern into a femalelike profile with irregular pulses of higher frequency.
生长激素(GH)的分泌主要受生长激素释放激素(GHRH)和生长激素释放抑制激素[生长抑素(SRIF)]的控制,在许多物种中呈现出明显的性别差异。我们推测,由GH、GHRH和SRIF之间的调节相互作用驱动的动态核心GH网络内相对较小的差异解释了这种性别差异。为了研究这一概念,我们基于两个耦合振荡器实施了一个最小生物数学模型:GH和GHRH之间的时间延迟相互作用,赋予高频(40 - 60分钟)GH振荡,以及时间滞后的双向GH - SRIF相互作用,介导低频(每3.3小时发生一次)GH波动。我们表明,这种足以解释雄性大鼠GH动态的基本公式[Farhy LS,Straume M,Johnson ML,Kovatchev BP和Veldhuis JD。《美国生理学杂志:调节、整合与比较生理学》281:R38 - R51,2001],如果GH对SRIF的自反馈放松,则可模拟雌性GH释放模式。GH刺激的SRIF释放的缓解会抑制较慢的波动样振荡器,使由GH - GHRH相互作用维持的潜在高频振荡得以出现。同时,基础生长抑素流出的变异性增加引入了雌性GH动态典型的可量化的、性别特异性的释放过程无序性。因此,在交互式GH - GHRH - SRIF集合内调节GH对SRIF的自反馈以及提高基础SRIF变异性足以将有序的、3.3小时间隔的、多相的、波动样的雄性GH模式转变为具有更高频率不规则脉冲的雌性样特征。