Suppr超能文献

用于多个感兴趣区域的脑模板的实施与应用。

Implementation and application of a brain template for multiple volumes of interest.

作者信息

Hammers Alexander, Koepp Matthias J, Free Samantha L, Brett Matthew, Richardson Mark P, Labbé Claire, Cunningham Vincent J, Brooks David J, Duncan John

机构信息

Neuroscience Group of the Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

出版信息

Hum Brain Mapp. 2002 Mar;15(3):165-74. doi: 10.1002/hbm.10016.

Abstract

We present a region template and a protocol for transforming that template to define anatomical volumes of interest (VOIs) in the human brain without operator intervention, based on software contained in the SPM99 package (Statistical Parametric Mapping, Wellcome Department of Cognitive Neurology, London, UK). We used an MRI of a reference brain to create an anatomical template of 41 VOIs, covering the entire brain, that can be spatially transformed to fit individual brain scans. Modified software allows for the reslicing and adaptation of the transformed template to any type of coregistered functional data. Individually defined VOIs can be added. We present an assessment of the necessary spatial transformations and compare results obtained for scans acquired in two different orientations. To evaluate the spatial transformations, 11 landmarks distributed throughout the brain were chosen. Euclidean distances between repeat samples at each landmark were averaged across all landmarks to give a mean difference of 1.3 plus minus 1.0 mm. Average Euclidean distances between landmarks (MRI:transformed template) were 8.1 plus minus 3.7 mm in anterior-posterior commissure (ACPC) and 7.6 plus minus 3.7 mm in temporal lobe (TL) orientation. In this study, we use [(11)C]-flumazenil-(FMZ-)PET as an example for the application of the region template. Thirty-four healthy volunteers were scanned, 21 in standard ACPC orientation, 13 in TL orientation. All had high resolution MRI and FMZ-PET. The average coefficient of variation (CV) of FMZ binding for cortical regions was 0.15, comparable with CVs from manually defined VOIs. FMZ binding was significantly different in 6/19 anatomical areas in the control groups obtained in the different orientations, probably due to anisotropic voxel dimensions. This new template allows for the reliable and fast definition of multiple VOIs. It can be used for different imaging modalities and in different orientations. It is necessary that imaging data for groups compared are acquired in the same orientation.

摘要

我们基于SPM99软件包(统计参数映射,英国伦敦惠康认知神经学系)中的软件,提出了一种区域模板和一种将该模板进行转换以在无需操作员干预的情况下定义人脑感兴趣解剖体积(VOI)的方案。我们使用了一个参考脑的MRI来创建一个包含41个VOI的解剖模板,覆盖整个大脑,该模板可以进行空间转换以适应个体脑部扫描。修改后的软件允许对转换后的模板进行重新切片并使其适应任何类型的配准功能数据。可以添加单独定义的VOI。我们对必要的空间转换进行了评估,并比较了在两种不同方向上获取的扫描结果。为了评估空间转换,在整个大脑中选择了11个地标。对每个地标处重复样本之间的欧几里得距离在所有地标上进行平均,得出平均差异为1.3±1.0毫米。在前连合后连合(ACPC)方向上,地标(MRI:转换后的模板)之间的平均欧几里得距离为8.1±3.7毫米,在颞叶(TL)方向上为7.6±3.7毫米。在本研究中,我们以[(11)C]-氟马西尼-(FMZ-)PET为例说明区域模板的应用。对34名健康志愿者进行了扫描,21名采用标准ACPC方向,13名采用TL方向。所有志愿者都进行了高分辨率MRI和FMZ-PET扫描。皮质区域FMZ结合的平均变异系数(CV)为0.15,与手动定义的VOI的CV相当。在不同方向获得的对照组中,19个解剖区域中有6个区域的FMZ结合存在显著差异,这可能是由于体素尺寸的各向异性所致。这种新模板允许可靠且快速地定义多个VOI。它可用于不同的成像模态和不同的方向。比较的组的成像数据必须在相同方向上获取。

相似文献

1
Implementation and application of a brain template for multiple volumes of interest.
Hum Brain Mapp. 2002 Mar;15(3):165-74. doi: 10.1002/hbm.10016.
2
MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy.
Neuroimage. 1996 Apr;3(2):109-18. doi: 10.1006/nimg.1996.0013.
3
Template-based method for multiple volumes of interest of human brain PET images.
Neuroimage. 2002 Jul;16(3 Pt 1):577-86. doi: 10.1006/nimg.2002.1120.
4
11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.
Neurology. 2000 Jan 25;54(2):332-9. doi: 10.1212/wnl.54.2.332.
6
Influence of the normalization template on the outcome of statistical parametric mapping of PET scans.
Neuroimage. 2003 Jul;19(3):601-12. doi: 10.1016/s1053-8119(03)00072-7.
8
Assessment of spatial normalization of PET ligand images using ligand-specific templates.
Neuroimage. 1999 May;9(5):545-53. doi: 10.1006/nimg.1999.0431.

引用本文的文献

1
Genetic, vascular and amyloid components of cerebral blood flow in a preclinical population.
J Cereb Blood Flow Metab. 2023 Oct;43(10):1726-1736. doi: 10.1177/0271678X231178993. Epub 2023 May 26.
2
Cognitive performance in multiple sclerosis: what is the role of the gamma-aminobutyric acid system?
Brain Commun. 2023 May 3;5(3):fcad140. doi: 10.1093/braincomms/fcad140. eCollection 2023.
3
Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status.
J Neurovirol. 2023 Feb;29(1):65-77. doi: 10.1007/s13365-022-01101-3. Epub 2022 Nov 23.
4
Spatial normalization and quantification approaches of PET imaging for neurological disorders.
Eur J Nucl Med Mol Imaging. 2022 Sep;49(11):3809-3829. doi: 10.1007/s00259-022-05809-6. Epub 2022 May 28.
6
Exploring effects of Souvenaid on cerebral glucose metabolism in Alzheimer's disease.
Alzheimers Dement (N Y). 2019 Sep 27;5:492-500. doi: 10.1016/j.trci.2019.08.002. eCollection 2019.
7
Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer's disease.
Neuroimage Clin. 2018 May 22;19:625-632. doi: 10.1016/j.nicl.2018.05.024. eCollection 2018.
8
Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases.
PLoS One. 2017 Aug 28;12(8):e0180866. doi: 10.1371/journal.pone.0180866. eCollection 2017.
10
In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis.
NPJ Schizophr. 2016 Aug 31;2:16031. doi: 10.1038/npjschz.2016.31. eCollection 2016.

本文引用的文献

1
A convolution-subtraction scatter correction method for 3D PET.
Phys Med Biol. 1994 Mar;39(3):411-24. doi: 10.1088/0031-9155/39/3/009.
2
Central benzodiazepine receptors in malformations of cortical development: A quantitative study.
Brain. 2001 Aug;124(Pt 8):1555-65. doi: 10.1093/brain/124.8.1555.
3
Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy.
Neurology. 2001 Apr 10;56(7):897-906. doi: 10.1212/wnl.56.7.897.
5
11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.
Neurology. 2000 Jan 25;54(2):332-9. doi: 10.1212/wnl.54.2.332.
7
Nonlinear spatial normalization using basis functions.
Hum Brain Mapp. 1999;7(4):254-66. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G.
8
Assessment of spatial normalization of PET ligand images using ligand-specific templates.
Neuroimage. 1999 May;9(5):545-53. doi: 10.1006/nimg.1999.0431.
9
Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography.
J Cereb Blood Flow Metab. 1999 May;19(5):547-59. doi: 10.1097/00004647-199905000-00009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验